光谱学与光谱分析 |
|
|
|
|
|
Preparation and Characteristic Analysis of Ractopamine Molecularly Imprinted Polymers |
WANG Yi-ru, LIU Hai-feng, ZHANG Hong-cai, LIU Guo-yan, CHAI Chun-yan* |
School of Agriculture & Biology, Shanghai Jiaotong University; Shanghai Veterinary Bio-Tech Key Laboratory, Shanghai 200240, China |
|
|
Abstract A molecularly imprinted polymers (MIPs) of Ractopamine (RCT) was prepared by thermal polymerization method, and the adsorptive characters of the MIPs was investigated with ultraviolet spectrophotometric method. The results showed that RCT had the maximum absorbance value at the wavelength of 272 nm, the regression equation of RCT was y=7.354 1x+0.001 0, R2=0.999 9, and the average adsorption rate of MIPs was 83.4%. According to the adsorption kinetics, the adsorption time should be controlled within 10 minutes. Infrared spectrum analysis indicated that the MIPs was formed by hydrogen bonds between RCT and functional monomer methacrylic acid, the MIPs of RCT recognized RCT and combined with it exclusively via hydrogen bonds. The investigation is very useful and important for establishing RCT detection methods based on molecularly imprinted technology.
|
Received: 2013-02-17
Accepted: 2013-04-20
|
|
Corresponding Authors:
CHAI Chun-yan
E-mail: cychai88@hotmail.com
|
|
[1] Ross K A, Beaulieu A D, Merrill J, et al. Journal of Animal Science, 2011, 89(7): 2243. [2] Woerner D R, Tatum J D, Engle T E, et al. Journal of Animal Science, 2011, 89(1): 201. [3] Pleadin J, Vulic A, Persi N, et al. Food Technology & Biotechnology, 2011, 49(4): 517. [4] Pleadin J, Persi N, Vulic A, et al. Meat Science, 2012, 90(3): 755. [5] Pleadin J, Vulic A, Persi N, et al. Immunopharmacol Immunotoxicol, 2013, 35(1): 88. [6] Zhang Baixin, Zhao Jingchan, Bijing Sha, et al. Analitical Methods, 2012, 10: 3187. [7] Kan Xianwen, Xing Zonglan, Zhu Anhong, et al. Sensors and Actuators B: Chemical, 2012, 168(20): 395. [8] Yuuki Sueyoshi, Akira Utsunomiya, Masakazu Yoshikawa, et al. Journal of Membrane Science, 2012, 401-402: 89. [9] Chen L X , Xu S F , Li J H . Chemical Society Reviews, 2011, 40: 2922. [10] Yuma Hiratsuka, Noriko Funaya, Hisami Matsunaga, et al. Journal of Pharmaceutical and Biomedical Analysis, 2013, 75: 180. [11] Zeng Huan, Wang Yuzhi, Liu Xiaojie, et al. Talanta, 2012, 93: 172. [12] Xiao Xia Lia, Xin Liua, Li Hong Baia, et al. Chinese Chemical Letters, 2011, 22(8): 989. |
[1] |
LI Shu-jie1, LIU Jie1, DENG Zi-ang1, OU Quan-hong1, SHI You-ming2, LIU Gang1*. Study of Germinated Rice Seeds by FTIR Spectroscopy Combined With Curve Fitting[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1832-1840. |
[2] |
ZHANG Yan-ru1, 2, SHAO Peng-shuai1*. Study on the Effects of Planting Years of Vegetable Greenhouse on the
Cucumber Qualties Using Mid-IR Spectroscopoy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1816-1821. |
[3] |
SHI Wen-qiang1, XU Xiu-ying1*, ZHANG Wei1, ZHANG Ping2, SUN Hai-tian1, 3, HU Jun1. Prediction Model of Soil Moisture Content in Northern Cold Region Based on Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1704-1710. |
[4] |
WANG Xue-pei1, 2, ZHANG Lu-wei1, 2, BAI Xue-bing3, MO Xian-bin1, ZHANG Xiao-shuan1, 2*. Infrared Spectral Characterization of Ultraviolet Ozone Treatment on Substrate Surface for Flexible Electronics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1867-1873. |
[5] |
WANG Yue1, 3, 4, CHEN Nan1, 2, 3, 4, WANG Bo-yu1, 5, LIU Tao1, 3, 4*, XIA Yang1, 2, 3, 4*. Fourier Transform Near-Infrared Spectral System Based on Laser-Driven Plasma Light Source[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1666-1673. |
[6] |
FENG Rui-jie1, CHEN Zheng-guang1, 2*, YI Shu-juan3. Identification of Corn Varieties Based on Bayesian Optimization SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1698-1703. |
[7] |
YU Zhi-rong, HONG Ming-jian*. Near-Infrared Spectral Quantitative Analysis Network Based on Grouped Fully Connection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1735-1740. |
[8] |
XIE Yu-yu1, 2, 3, HOU Xue-ling1, CHEN Zhi-hui2, AISA Haji Akber1, 3*. Density Functional Theory Studies on Structure and Spectra of Salidroside Molecule[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1786-1791. |
[9] |
MENG Fan-jia1, LUO Shi1, WU Yue-feng1, SUN Hong1, LIU Fei2, LI Min-zan1*, HUANG Wei3, LI Mu3. Characteristic Extraction Method and Discriminant Model of Ear Rot of Maize Seed Base on NIR Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1716-1720. |
[10] |
PENG Yan-fang1, WANG Jun1, WU Zhi-sheng2*, LIU Xiao-na3, QIAO Yan-jiang2*. NIR Band Assignment of Tanshinone ⅡA and Cryptotanshinone by
2D-COS Technology and Model Application Tanshinone Extract[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1781-1785. |
[11] |
TIAN Xue1, CHE Qian1, YAN Wei-min1, OU Quan-hong1, SHI You-ming2, LIU Gang1*. Discrimination of Millet Varieties and Producing Areas Based on Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1841-1847. |
[12] |
HU Bin1, 2, FU Hao1, WANG Wen-bin1, ZHANG Bing1, 2, TANG Fan3*, MA Shan-wei1, 2, LU Qiang1, 2*. Research on Deep Sorting Approach Based on Infrared Spectroscopy for High-Value Utilization of Municipal Solid Waste[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1353-1360. |
[13] |
YAN Ling-tong, LI Li, SUN He-yang, XU Qing, FENG Song-lin*. Spectrometric Investigation of Structure Hydroxyl in Traditional Ceramics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1361-1365. |
[14] |
WANG Li-qi1, YAO Jing1, WANG Rui-ying1, CHEN Ying-shu1, LUO Shu-nian2, WANG Wei-ning2, ZHANG Yan-rong1*. Research on Detection of Soybean Meal Quality by NIR Based on
PLS-GRNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1433-1438. |
[15] |
WANG Yan-ru, TANG Hai-jun*, ZHANG Yao. Study on Infrared Spectral Detection of Fuel Contamination in Mobil Jet Oil II Lubricating Oil[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1541-1546. |
|
|
|
|