光谱学与光谱分析 |
|
|
|
|
|
Study on the Ignition Mechanism of Aluminum Nanoparticle by Fast Spectroscopy |
YAN Zheng-xin1, 2, DENG Jun1, ZHANG Yan-ni1 |
1. Key Laboratory of Western Mine Exploitation and Hazard Prevention of the Ministry of Education, Xi’an University of Science and Technology, Xi’an 710054, China 2. Faculty of Science, Xi’an University of Science and Technology, Xi’an 710054, China |
|
|
Abstract The ignition delay times and special spectral intensity of aluminum nanopowders reacting with propylene oxide were investigated by fast spectrum system triggered by synchronous shock light singles, and the ignition mechanism was presented from those data. X-ray diffraction (XRD) spectrum indicated that aluminum nanoparticle produced by plasma method has been oxidized for its high activity, X-ray photoelectron spectroscopy (XPS) of sample revealed that there is 3 nm oxide layer on its surface. XPS of the products showed that the oxide layer thickness will increase with the increasing shock wave strength. AlO(464.8 nm) ignition times investigated by monochromator revealed that aluminum nanoparticle will be equably distributed in propylene oxide vapor for increasing shock wave strength to increase its heating surface and heating rate, and shock wave will easily crack the 3 nm oxide layer on aluminum nanoprticle present chance for core active aluminum to react with oxygen atome and containing-oxygen molecule in the reaction system to ignite.
|
Received: 2009-05-10
Accepted: 2009-08-20
|
|
Corresponding Authors:
YAN Zheng-xin
E-mail: zhengxinyan163@163.com
|
|
[1] Epstein M, Fauske H K, Theofous T G. Nuclear Engeering and Design, 2000, 201: 71. [2] Liang Z, Browne S, Shepherd J E. Pro Combust Inst, 2007, 31: 2445. [3] Yan Z X, Wu J H, Ye S, et al. J. Appl. Phys., 2007, 101: 024905. [4] Yan Z X, Deng J, Wang Y M, et al. Chin. Phys. Lett., 2009, 26: 0806101. [5] Prados C, Multigner M, Hernando A. J. Appl. Phys. , 2003, 85: 6118. [6] Benkiewic Z K, Hayashi A K. Fluid Dynamics Research, 2002, 30: 269. [7] CHENG Zhi-peng, YANG Yi, WANG Yi, et al(程志鹏,杨 毅,王 毅,等). Acta Phys. Chim. Sin(物理化学学报),2008, 23(1):152. [8] Ward S T, Trunov M A, Dreizin E L. Inter. J. Heat. Mass. Transfer, 2006, 49: 4943. [9] Kai Kadau, Timothy C Germann, Peter S Lomdahl, et al. Science, 2002, 296: 1681.
|
[1] |
ZHENG Hong-quan, DAI Jing-min*. Research Development of the Application of Photoacoustic Spectroscopy in Measurement of Trace Gas Concentration[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 1-14. |
[2] |
CHENG Jia-wei1, 2,LIU Xin-xing1, 2*,ZHANG Juan1, 2. Application of Infrared Spectroscopy in Exploration of Mineral Deposits: A Review[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 15-21. |
[3] |
FAN Ping-ping,LI Xue-ying,QIU Hui-min,HOU Guang-li,LIU Yan*. Spectral Analysis of Organic Carbon in Sediments of the Yellow Sea and Bohai Sea by Different Spectrometers[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 52-55. |
[4] |
LI Jie, ZHOU Qu*, JIA Lu-fen, CUI Xiao-sen. Comparative Study on Detection Methods of Furfural in Transformer Oil Based on IR and Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 125-133. |
[5] |
BAI Xi-lin1, 2, PENG Yue1, 2, ZHANG Xue-dong1, 2, GE Jing1, 2*. Ultrafast Dynamics of CdSe/ZnS Quantum Dots and Quantum
Dot-Acceptor Molecular Complexes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 56-61. |
[6] |
XU Tian1, 2, LI Jing1, 2, LIU Zhen-hua1, 2*. Remote Sensing Inversion of Soil Manganese in Nanchuan District, Chongqing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 69-75. |
[7] |
WANG Fang-yuan1, 2, HAN Sen1, 2, YE Song1, 2, YIN Shan1, 2, LI Shu1, 2, WANG Xin-qiang1, 2*. A DFT Method to Study the Structure and Raman Spectra of Lignin
Monomer and Dimer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 76-81. |
[8] |
YANG Cheng-en1, 2, LI Meng3, LU Qiu-yu2, WANG Jin-ling4, LI Yu-ting2*, SU Ling1*. Fast Prediction of Flavone and Polysaccharide Contents in
Aronia Melanocarpa by FTIR and ELM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 62-68. |
[9] |
LIU Zhen1*, LIU Li2*, FAN Shuo2, ZHAO An-ran2, LIU Si-lu2. Training Sample Selection for Spectral Reconstruction Based on Improved K-Means Clustering[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 29-35. |
[10] |
YANG Chao-pu1, 2, FANG Wen-qing3*, WU Qing-feng3, LI Chun1, LI Xiao-long1. Study on Changes of Blue Light Hazard and Circadian Effect of AMOLED With Age Based on Spectral Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 36-43. |
[11] |
GAO Feng1, 2, XING Ya-ge3, 4, LUO Hua-ping1, 2, ZHANG Yuan-hua3, 4, GUO Ling3, 4*. Nondestructive Identification of Apricot Varieties Based on Visible/Near Infrared Spectroscopy and Chemometrics Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 44-51. |
[12] |
ZHENG Pei-chao, YIN Yi-tong, WANG Jin-mei*, ZHOU Chun-yan, ZHANG Li, ZENG Jin-rui, LÜ Qiang. Study on the Method of Detecting Phosphate Ions in Water Based on
Ultraviolet Absorption Spectrum Combined With SPA-ELM Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 82-87. |
[13] |
XU Qiu-yi1, 3, 4, ZHU Wen-yue3, 4, CHEN Jie2, 3, 4, LIU Qiang3, 4 *, ZHENG Jian-jie3, 4, YANG Tao2, 3, 4, YANG Teng-fei2, 3, 4. Calibration Method of Aerosol Absorption Coefficient Based on
Photoacoustic Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 88-94. |
[14] |
LI Xin-ting, ZHANG Feng, FENG Jie*. Convolutional Neural Network Combined With Improved Spectral
Processing Method for Potato Disease Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 215-224. |
[15] |
XING Hai-bo1, ZHENG Bo-wen1, LI Xin-yue1, HUANG Bo-tao2, XIANG Xiao2, HU Xiao-jun1*. Colorimetric and SERS Dual-Channel Sensing Detection of Pyrene in
Water[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 95-102. |
|
|
|
|