光谱学与光谱分析 |
|
|
|
|
|
Highly Efficient and Chromatic-Stability Yellow Organic Light Emitting Diodes Using Double Ultra Thin Yellow Emissive Layers |
LU Lin,LIAO Ying-jie,LIU Ji-zhong,WEI Bin*,ZHANG Jian-hua |
Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Shanghai 200072, China |
|
|
Abstract The authors investigated the efficiency and chromatic-stability characteristics of organic light emitting devices (OLEDs) with ultra-thin yellow emissive layers of 0.1 nm 5,6,11,12,-tetraphenylnaphthacene (rubrene) and hole block layer of BCP. The OLEDs with double thin rubrene layers and BCP layer were found to exhibit a high luminance and electroluminescence (EL) efficiency. The maximum EL efficiency and luminance reached 6.35 cd·A-1 at 6 V and 7 068 cd·m-2 at 10 V respectively. Moreover, Commission International De L’Eclairage (CIE) coordination maintained unchanged (0.49, 0.49) in the wide range of applied voltages. The enhanced efficiency and good chromatic stability were attributed to a balanced injection and transport of electrons and holes and the expected confinement and balanced recombination of the emission region in the ultra-thin rubrene layers.
|
Received: 2009-10-08
Accepted: 2010-01-09
|
|
Corresponding Authors:
WEI Bin
E-mail: bwei@shu.edu.cn
|
|
[1] Burrows P E, Frrest S R. Appl. Phys. Lett., 2000, 76: 2493. [2] Baldo M A, O’Brien D F, You Y, et al. Nature(London), 1998, 359: 151. [3] Shen Z, Burrows P E, Bulvovic V, et al. Science, 1997, 276: 2009. [4] Burrows P E, Bulovic V, Frrest S R, et al. Appl. Phys. Lett., 1994, 65: 2922. [5] Adachi C, Tsutsui T, Saito S. Appl. Phys. Lett., 1990, 57: 531. [6] Tang C W, Vanslyke S A. Appl. Phys. Lett., 1987, 51: 3610. [7] Uchida M, Adachi C, Koyama T, et al. J. Appl. Phys., 1999, 86: 1680. [8] Sakamoto G, Adachi C, Koyama T, et al. Appl. Phys. Lett., 1999, 75: 766. [9] Sano T, Fujii H, Nishio Y, et al. Synthetic Metals, 1997, 91: 27. [10] Hamada Y, Sano T, Shibata K, et al. Jpn. J. Appl. Phy. Part 2, 1995, 34: L824. [11] Zhang Z, Jiang X, Xu S, et al. J. Phys. D, 1998, 31: 32. [12] Huang J S, Yang K X, Liu S Y. Appl. Phys. Lett., 2000, 77: 1750. [13] Wakimoto T, Yonemoto Y, Funaki J, et al. Synth. Met., 1997, 91: 15. [14] Baldo M A, O’Brien D F, Thompson M E, et al. Phys. Rev. B., 1999, 60: 14422. [15] YU Jun-sheng,LI Lu,WEN Wen,et al (于军胜,李 璐,文 雯,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2009,29(8):2046. [16] Matsumura M, Furukawa T. Jpn. J. Appl. Phys., 2001, 40: 3211. [17] Cheng G, Zhang Y F, Zhao Y, et al. Appl. Phys. Lett., 2005, 87: 013506. [18] Baldo M A, Lamansky S, Burrows P E, et al. Appl. Phys. Lett., 1999, 75: 4.
|
[1] |
ZHENG Hong-quan, DAI Jing-min*. Research Development of the Application of Photoacoustic Spectroscopy in Measurement of Trace Gas Concentration[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 1-14. |
[2] |
CHENG Jia-wei1, 2,LIU Xin-xing1, 2*,ZHANG Juan1, 2. Application of Infrared Spectroscopy in Exploration of Mineral Deposits: A Review[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 15-21. |
[3] |
FAN Ping-ping,LI Xue-ying,QIU Hui-min,HOU Guang-li,LIU Yan*. Spectral Analysis of Organic Carbon in Sediments of the Yellow Sea and Bohai Sea by Different Spectrometers[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 52-55. |
[4] |
LI Jie, ZHOU Qu*, JIA Lu-fen, CUI Xiao-sen. Comparative Study on Detection Methods of Furfural in Transformer Oil Based on IR and Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 125-133. |
[5] |
WANG Fang-yuan1, 2, HAN Sen1, 2, YE Song1, 2, YIN Shan1, 2, LI Shu1, 2, WANG Xin-qiang1, 2*. A DFT Method to Study the Structure and Raman Spectra of Lignin
Monomer and Dimer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 76-81. |
[6] |
BAI Xi-lin1, 2, PENG Yue1, 2, ZHANG Xue-dong1, 2, GE Jing1, 2*. Ultrafast Dynamics of CdSe/ZnS Quantum Dots and Quantum
Dot-Acceptor Molecular Complexes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 56-61. |
[7] |
XU Tian1, 2, LI Jing1, 2, LIU Zhen-hua1, 2*. Remote Sensing Inversion of Soil Manganese in Nanchuan District, Chongqing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 69-75. |
[8] |
LIU Zhen1*, LIU Li2*, FAN Shuo2, ZHAO An-ran2, LIU Si-lu2. Training Sample Selection for Spectral Reconstruction Based on Improved K-Means Clustering[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 29-35. |
[9] |
YANG Chao-pu1, 2, FANG Wen-qing3*, WU Qing-feng3, LI Chun1, LI Xiao-long1. Study on Changes of Blue Light Hazard and Circadian Effect of AMOLED With Age Based on Spectral Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 36-43. |
[10] |
GAO Feng1, 2, XING Ya-ge3, 4, LUO Hua-ping1, 2, ZHANG Yuan-hua3, 4, GUO Ling3, 4*. Nondestructive Identification of Apricot Varieties Based on Visible/Near Infrared Spectroscopy and Chemometrics Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 44-51. |
[11] |
ZHENG Pei-chao, YIN Yi-tong, WANG Jin-mei*, ZHOU Chun-yan, ZHANG Li, ZENG Jin-rui, LÜ Qiang. Study on the Method of Detecting Phosphate Ions in Water Based on
Ultraviolet Absorption Spectrum Combined With SPA-ELM Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 82-87. |
[12] |
XU Qiu-yi1, 3, 4, ZHU Wen-yue3, 4, CHEN Jie2, 3, 4, LIU Qiang3, 4 *, ZHENG Jian-jie3, 4, YANG Tao2, 3, 4, YANG Teng-fei2, 3, 4. Calibration Method of Aerosol Absorption Coefficient Based on
Photoacoustic Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 88-94. |
[13] |
LI Xin-ting, ZHANG Feng, FENG Jie*. Convolutional Neural Network Combined With Improved Spectral
Processing Method for Potato Disease Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 215-224. |
[14] |
XING Hai-bo1, ZHENG Bo-wen1, LI Xin-yue1, HUANG Bo-tao2, XIANG Xiao2, HU Xiao-jun1*. Colorimetric and SERS Dual-Channel Sensing Detection of Pyrene in
Water[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 95-102. |
[15] |
LEI Hong-jun1, YANG Guang1, PAN Hong-wei1*, WANG Yi-fei1, YI Jun2, WANG Ke-ke2, WANG Guo-hao2, TONG Wen-bin1, SHI Li-li1. Influence of Hydrochemical Ions on Three-Dimensional Fluorescence
Spectrum of Dissolved Organic Matter in the Water Environment
and the Proposed Classification Pretreatment Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 134-140. |
|
|
|
|