光谱学与光谱分析 |
|
|
|
|
|
Preparation of Reactive Bright Blue Praseodymium Dyestuff and Its Spectral Properties |
LIU Xiao-zhen, YUAN Ya-qin, CAI Yu, ZHU Xian,WANG Yan-hong |
Department of Chemical Engineering, Shanghai Institute of Technology, Shanghai 200235,China |
|
|
Abstract Reactive bright blue praseodymium dyestuff was prepared by using reactive bright blue and praseodymium oxide. The spectra of reactive bright blue praseodymium and dyed silk cloth by reactive bright blue praseodymium dyestuff were studied by UV-Vis and IR spectra respectively. In the range of 200-800 nm, reactive bright blue has four absorption peaks, and λmax is 259 nm; reactive bright blue praseodymium has three absorption peaks, while λmax is 264.00 nm. In the range of 420-760 nm, reactive bright blue has two absorption peaks at 661.50 and 625.50 nm, respectively,and λmax is 661.50 nm; reactive bright blue praseodymium has only one absorption peak at 618.00 nm. Coordinate bond links reactive bright blue to praseodymium ion. Reactive bright blue praseodymium increases linking radicals as compared with reactive bright blue.
|
Received: 2002-12-28
Accepted: 2003-05-26
|
|
Corresponding Authors:
LIU Xiao-zhen
|
|
Cite this article: |
LIU Xiao-zhen,YUAN Ya-qin,CAI Yu, et al. Preparation of Reactive Bright Blue Praseodymium Dyestuff and Its Spectral Properties [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2004, 24(08): 950-952.
|
|
|
|
URL: |
http://www.gpxygpfx.com/EN/Y2004/V24/I08/950 |
[1] SHI Mei-wu(施楣梧). Fine Petrochemical Industry(精细石油化工),1996,(6):2. [2] LIU Xiao-zhen et al(刘小珍等). Chinese J. Spectroscopy Laboratory(光谱实验室), 2000,17(5): 610. [3] LIU Xiao-zhen(刘小珍). Chinese J. of Analysis Laboratory(分析试验室), 2002,21(增刊): 252.
|
[1] |
LI Shu-jie1, LIU Jie1, DENG Zi-ang1, OU Quan-hong1, SHI You-ming2, LIU Gang1*. Study of Germinated Rice Seeds by FTIR Spectroscopy Combined With Curve Fitting[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1832-1840. |
[2] |
ZHANG Yan-ru1, 2, SHAO Peng-shuai1*. Study on the Effects of Planting Years of Vegetable Greenhouse on the
Cucumber Qualties Using Mid-IR Spectroscopoy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1816-1821. |
[3] |
SHI Wen-qiang1, XU Xiu-ying1*, ZHANG Wei1, ZHANG Ping2, SUN Hai-tian1, 3, HU Jun1. Prediction Model of Soil Moisture Content in Northern Cold Region Based on Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1704-1710. |
[4] |
WANG Xue-pei1, 2, ZHANG Lu-wei1, 2, BAI Xue-bing3, MO Xian-bin1, ZHANG Xiao-shuan1, 2*. Infrared Spectral Characterization of Ultraviolet Ozone Treatment on Substrate Surface for Flexible Electronics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1867-1873. |
[5] |
WANG Yue1, 3, 4, CHEN Nan1, 2, 3, 4, WANG Bo-yu1, 5, LIU Tao1, 3, 4*, XIA Yang1, 2, 3, 4*. Fourier Transform Near-Infrared Spectral System Based on Laser-Driven Plasma Light Source[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1666-1673. |
[6] |
FENG Rui-jie1, CHEN Zheng-guang1, 2*, YI Shu-juan3. Identification of Corn Varieties Based on Bayesian Optimization SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1698-1703. |
[7] |
YU Zhi-rong, HONG Ming-jian*. Near-Infrared Spectral Quantitative Analysis Network Based on Grouped Fully Connection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1735-1740. |
[8] |
XIE Yu-yu1, 2, 3, HOU Xue-ling1, CHEN Zhi-hui2, AISA Haji Akber1, 3*. Density Functional Theory Studies on Structure and Spectra of Salidroside Molecule[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1786-1791. |
[9] |
MENG Fan-jia1, LUO Shi1, WU Yue-feng1, SUN Hong1, LIU Fei2, LI Min-zan1*, HUANG Wei3, LI Mu3. Characteristic Extraction Method and Discriminant Model of Ear Rot of Maize Seed Base on NIR Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1716-1720. |
[10] |
PENG Yan-fang1, WANG Jun1, WU Zhi-sheng2*, LIU Xiao-na3, QIAO Yan-jiang2*. NIR Band Assignment of Tanshinone ⅡA and Cryptotanshinone by
2D-COS Technology and Model Application Tanshinone Extract[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1781-1785. |
[11] |
TIAN Xue1, CHE Qian1, YAN Wei-min1, OU Quan-hong1, SHI You-ming2, LIU Gang1*. Discrimination of Millet Varieties and Producing Areas Based on Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1841-1847. |
[12] |
HU Bin1, 2, FU Hao1, WANG Wen-bin1, ZHANG Bing1, 2, TANG Fan3*, MA Shan-wei1, 2, LU Qiang1, 2*. Research on Deep Sorting Approach Based on Infrared Spectroscopy for High-Value Utilization of Municipal Solid Waste[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1353-1360. |
[13] |
YAN Ling-tong, LI Li, SUN He-yang, XU Qing, FENG Song-lin*. Spectrometric Investigation of Structure Hydroxyl in Traditional Ceramics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1361-1365. |
[14] |
WANG Li-qi1, YAO Jing1, WANG Rui-ying1, CHEN Ying-shu1, LUO Shu-nian2, WANG Wei-ning2, ZHANG Yan-rong1*. Research on Detection of Soybean Meal Quality by NIR Based on
PLS-GRNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1433-1438. |
[15] |
WANG Yan-ru, TANG Hai-jun*, ZHANG Yao. Study on Infrared Spectral Detection of Fuel Contamination in Mobil Jet Oil II Lubricating Oil[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1541-1546. |
|
|
|
|