光谱学与光谱分析 |
|
|
|
|
|
Synthesis and Spectra of Copper(Ⅰ) Bromide Complex with N,N-Bis[(Diphenylphosphino)Methyl]-2-Pyridinylamine |
CHI Shao-ming1,2,3,ZHANG Jun-feng3,BIAN Zhao-yong1,FU Wen-fu1* |
1. Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China 2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China 3. College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China |
|
|
Abstract A new ligand N,N-bis[(diphenylphosphino)methyl]-2-pyridinylamine (L) and its luminescent dinuclear copper(Ⅰ) complex [CuBrL]2 (1) were synthesized and characterized by mass spectrometry, elemental analysis, NMR and electronic spectroscopies. The structure of complex 1 was determined by X-ray crystal analysis to be a dinuclear complex with a pseudo-tetrahedral geometry. The complex 1 crystallizes in a triclinic space group P-1 and has two copper(Ⅰ) centers bridged by two halogen ligands to form the dinuclear structure with a four-membered Cu2Br2 ring. The Cu-Cu distance in complex 1 is 0.306 0 nm which is longer than a sum of Van der Waals radius of two copper(Ⅰ) atoms. Therefore there is no substantial interaction between the two copper(Ⅰ) centers in complex 1. DFT calculations indicate that the electron density of HOMO is distributed mainly over the copper, bromine and phosphorus atoms, while that of LUMO is localized on the ligand. Our work shows that there are two mechanisms to form the the lowest excited state of complex 1, i.e. the metal-to-ligand charge transfer (MLCT) and halogen-to-ligand charge transfer (XLCT).
|
Received: 2009-06-12
Accepted: 2009-09-16
|
|
Corresponding Authors:
FU Wen-fu
E-mail: Fuwfu@sohu.com
|
|
[1] McMillin D R, McNett K M. Chem. Rev., 1998, 98(3): 1201. [2] Pawlowski V, Knr G, Lennartz C, et al. Eur. J. Inorg. Chem., 2005, (15): 3167. [3] Tsuboyama A, Kuge K, Furugori M, et al. Inorg. Chem., 2007, 46(6): 1992. [4] Samia A C S, Cody J, Fahrni C J, et al. J. Phys. Chem. B, 2004, 108(2): 563. [5] Kirchhoff J R, Gamache R E, Blaskie M W, et al. Inorg. Chem., 1983, 22(17): 2380. [6] Riesgo E C, Hu Y Z, Bouvier F, et al. Inorg. Chem., 2001, 40(14): 3413. [7] Miller M T, Gantzel P K, Karpishin T B. Inorg. Chem., 1999, 38(14): 3414. [8] Kovalevsky A Y, Gembicky M, Novozhilova I V, et al. Inorg. Chem., 2003, 42(26): 8794. [9] Chen L X, Shaw G B, Novozhilova I, et al. J. Am. Chem. Soc., 2003, 125(23): 7022. [10] Jahng Y, Hazelrigg J, Kimball D, et al. Inorg. Chem., 1997, 36(23): 5390. [11] Felder D, Nierengarten J F, Barigelletti F, et al. J. Am. Chem. Soc., 2001, 123(26): 6291. [12] Eggleston M K, McMillin D R, Koenig K S, et al. Inorg. Chem., 1997, 36(2): 172. [13] Cunningham C T, Moore J J, Cunningham K L H, et al. Inorg. Chem., 2000, 39(16): 3638. [14] Miller M T, Gantzel P K, Karpishin T B. J. Am. Chem. Soc., 1999, 121(17): 4292. [15] Cuttell D G, Kuang S M, Fanwick P E, et al. J. Am. Chem. Soc., 2002, 124(1): 6. [16] Perrin D D, Armarego W L F, Perrin D R. Purification of Laboratory Chemicals, 2nd ed. Oxford: Pergamon Press, 1980. [17] Higashi T. ABSCOR, Empirical Absorption Correction Based on Fourier Series Approximation. Tokyo: Rigaku Corporation, 1995. [18] Sheldrick G M. HELXS 97, Program for the Solution of Crystal Structure. Gottingen, Germany: University of Gottingen, 1997. [19] Sheldrick G M. HELXL 97, Program for the Refinement of Crystal Structure. Gottingen, Germany: University of Gottingen, 1997. [20] Huheey J E, Keiter E A, Keiter R L. Inorganic Chemistry: Principles of Structure and Reactivity. 4th ed. New York: Harper Collins College, 1993. [21] Jin Q H, Zhou L L, Yang X D, et al. Z. Kristallogr.,NCS, 2008, 223: 139. [22] ZHANG Peng, XIA Bao-hui, SUN Ying-hui, et al(张 鹏, 夏宝辉, 孙迎辉, 等). Chinese Science Bulletin(科学通报), 2006, 51(22): 2632. [23] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03, Revision C. 02. Wallingford CT: Gaussian, Inc., 2004. [24] EMSL Basis Set Library Available at http://www.emsl.pnl.gov/forms/basisform.html. [25] CHEN Liu-qing, LIU Xu-guang, XU Hui-xia(陈柳青, 刘旭光, 许慧侠, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2009, 29(5): 1201.
|
[1] |
ZHENG Hong-quan, DAI Jing-min*. Research Development of the Application of Photoacoustic Spectroscopy in Measurement of Trace Gas Concentration[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 1-14. |
[2] |
CHENG Jia-wei1, 2,LIU Xin-xing1, 2*,ZHANG Juan1, 2. Application of Infrared Spectroscopy in Exploration of Mineral Deposits: A Review[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 15-21. |
[3] |
FAN Ping-ping,LI Xue-ying,QIU Hui-min,HOU Guang-li,LIU Yan*. Spectral Analysis of Organic Carbon in Sediments of the Yellow Sea and Bohai Sea by Different Spectrometers[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 52-55. |
[4] |
LI Jie, ZHOU Qu*, JIA Lu-fen, CUI Xiao-sen. Comparative Study on Detection Methods of Furfural in Transformer Oil Based on IR and Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 125-133. |
[5] |
WANG Fang-yuan1, 2, HAN Sen1, 2, YE Song1, 2, YIN Shan1, 2, LI Shu1, 2, WANG Xin-qiang1, 2*. A DFT Method to Study the Structure and Raman Spectra of Lignin
Monomer and Dimer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 76-81. |
[6] |
BAI Xi-lin1, 2, PENG Yue1, 2, ZHANG Xue-dong1, 2, GE Jing1, 2*. Ultrafast Dynamics of CdSe/ZnS Quantum Dots and Quantum
Dot-Acceptor Molecular Complexes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 56-61. |
[7] |
XU Tian1, 2, LI Jing1, 2, LIU Zhen-hua1, 2*. Remote Sensing Inversion of Soil Manganese in Nanchuan District, Chongqing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 69-75. |
[8] |
YANG Cheng-en1, 2, LI Meng3, LU Qiu-yu2, WANG Jin-ling4, LI Yu-ting2*, SU Ling1*. Fast Prediction of Flavone and Polysaccharide Contents in
Aronia Melanocarpa by FTIR and ELM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 62-68. |
[9] |
LIU Zhen1*, LIU Li2*, FAN Shuo2, ZHAO An-ran2, LIU Si-lu2. Training Sample Selection for Spectral Reconstruction Based on Improved K-Means Clustering[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 29-35. |
[10] |
YANG Chao-pu1, 2, FANG Wen-qing3*, WU Qing-feng3, LI Chun1, LI Xiao-long1. Study on Changes of Blue Light Hazard and Circadian Effect of AMOLED With Age Based on Spectral Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 36-43. |
[11] |
GAO Feng1, 2, XING Ya-ge3, 4, LUO Hua-ping1, 2, ZHANG Yuan-hua3, 4, GUO Ling3, 4*. Nondestructive Identification of Apricot Varieties Based on Visible/Near Infrared Spectroscopy and Chemometrics Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 44-51. |
[12] |
ZHENG Pei-chao, YIN Yi-tong, WANG Jin-mei*, ZHOU Chun-yan, ZHANG Li, ZENG Jin-rui, LÜ Qiang. Study on the Method of Detecting Phosphate Ions in Water Based on
Ultraviolet Absorption Spectrum Combined With SPA-ELM Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 82-87. |
[13] |
XU Qiu-yi1, 3, 4, ZHU Wen-yue3, 4, CHEN Jie2, 3, 4, LIU Qiang3, 4 *, ZHENG Jian-jie3, 4, YANG Tao2, 3, 4, YANG Teng-fei2, 3, 4. Calibration Method of Aerosol Absorption Coefficient Based on
Photoacoustic Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 88-94. |
[14] |
LI Xin-ting, ZHANG Feng, FENG Jie*. Convolutional Neural Network Combined With Improved Spectral
Processing Method for Potato Disease Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 215-224. |
[15] |
XING Hai-bo1, ZHENG Bo-wen1, LI Xin-yue1, HUANG Bo-tao2, XIANG Xiao2, HU Xiao-jun1*. Colorimetric and SERS Dual-Channel Sensing Detection of Pyrene in
Water[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 95-102. |
|
|
|
|