光谱学与光谱分析 |
|
|
|
|
|
Applications of Real-Time Monitoring Techniques in Chemical Synthetic Ingredients |
SHI Kai-yun1,XIA Zhi-ning1, 2*,GAN Ting-ting1,JIANG Xue-mei1,XIA Chen2 |
1. College of Bioengineering, Chongqing University, Chongqing 400030, China 2. College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China |
|
|
Abstract Real-time monitoring technique for process parameters and/or insight variables of chemical synthetic ingredients is a novel chemical process analysis method, which can real time monitor the chemical synthetic ingredients, reveal the mechanism of chemical reaction occurring, reaction courses and kinetic characteristics, and monitor, control and adjust chemical reaction to determine the endpoint of reaction and enhance selectivity of reaction, quality and yields of product. Many real-time monitoring techniques were achieved to satisfy the demands in several chemical synthetic reactions. The structure and principles of current real-time monitoring techniques was stated, and a review was summarized on its applications in chemical synthetic ingredients. The research, development and applications of real-time monitoring techniques such as spectrometry (i.e. ultraviolet-visible spectrophotometry, infrared spectrometry, Raman spectroscopy, nuclear magnetic resonance spectroscopy, mass spectrometry and fluorescence spectroscopy), chromatography (i.e. thin layer chromatography, gas chromatography, high performance liquid chromatography and capillary electrophoresis) and their coupled techniques (i.e. GC-MS, GC-IR and LC-MS) for chemical synthetic ingredients were evaluated. The coupled techniques were utilized to take the advantages of their high performance separation and quantitative power of chromatography, and sensitive and qualitative identification capacity of spectrometric techniques could realize the real-time monitoring for special chemical synthetic ingredients in complex systems. The future developmental trends and application prospects of real-time monitoring techniques are also discussed. With the research & development of microprocessor and embedded system, the real-time monitoring instrument for chemical synthetic ingredients will have a trend to miniaturization, intelligence, digitization, functionalization and multichannel with widely versatile and strongly compatible features.
|
Received: 2009-02-02
Accepted: 2009-05-06
|
|
Corresponding Authors:
XIA Zhi-ning
E-mail: chem_lab_cqu@yahoo.com.cn
|
|
[1] Castellnou D, Fontes M, Jimeno C, et al. Tetrahedron, 2005, 61(51): 12111. [2] Daniele F. Mass Spectrometry Reviews, 2005, 24(1): 30. [3] Pedge N I, Walmsley A D. Applied Spectroscopy, 2007, 61(9): 940. [4] Heigl N, Petter C H, Rainer M, et al. Journal of Near Infrared Spectroscopy, 2007, 15(5): 269. [5] Strauss M J, Prinsloo N M. Applied Catalysis A: General, 2007, 320(1): 16. [6] Prinsloo N M, Engelbrecht J P, Mashapa T N, et al. Applied Catalysis A: General, 2008, 344(1-2): 20. [7] Pintar A, Malacea R, Pinel C, et al. Applied Catalysis A: General, 2004, 264(1): 1. [8] Sahre K, Schulze U, Hoffmann T, et al. Journal of Applied Polymer Science, 2006, 101(3): 1374. [9] Schaden S, Dominguez-Vidal A, Lendl B. Applied Spectroscopy, 2006, 60 (5): 568. [10] Lin Z H, Zhou L L, Mahajan A, et al. Journal of Pharmaceutical and Biomedical Analysis, 2006, 41(1): 99. [11] Namli H, Turhan O. Spectrochimica Acta Part A, 2006, 64(1): 93. [12] France S, Wack H, Taggi A E, et al. Journal of the American Chemical Society, 2004, 126(13): 4245. [13] Pintar A, Malacea R, Pinel C, et al. Vibrational Spectroscopy, 2007, 45(1): 18. [14] LIU Dong-feng, DU Wei-min, ZHOU He-tian, et al(刘东风, 杜为民, 周赫田, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2001, 21(3): 301. [15] Mcmanus M E, Collins S M J, Collins J M J. U. S. Patent, 7141769 B2, 2006. [16] Leadbeater N E, Smith R J. Organic Letter, 2006, 8(20): 4589. [17] Leadbeater N E, Schmink J R. Nature Protocols, 2008, 3(1): 1. [18] Takahashi Y, Sakai A, Kitamori T. J. Patent, 日本特开2006-90955 A, 2006. [19] Gal M, Mishkovsky M, Frydman L. Journal of the American Chemical Society, 2006, 128(3): 951. [20] Holzgrabe U, et al. NMR Spectroscopy in Pharmaceutical Analysis, Netherlands: Elsevier, 2008. 471. [21] Wensink H, Benito-Lopez F, Hermes D C, et al. Lab on a Chip, 2005, 5: 280. [22] Takahashi Y, Nakakoshi M, Sakurai S, et al. Analytical Sciences, 2007, 23(4): 395. [23] Roy A D, Jayalakshmi K, Dasgupta S, et al. Magnetic Resonance in Chemistry, 2008, 46(12): 1119. [24] Clinton R, Creaser C S, Bryant D. Analytica Chimica Acta, 2005, 539(1-2): 133. [25] Brivio M, Tas N R, Goedbloed M H, et al. Lab on a Chip, 2005, 5: 378. [26] Zhu L, Gamez G, Chen H W, et al. Rapid Communications in Mass Spectrometry, 2008, 22(19): 2993. [27] Marchand G, Dubois P, Delattre C, et al. Analytical Chemistry, 2008, 80 (15): 6051. [28] Leadbeater N E, Shoemaker K M. Organometallics, 2008, 27(6): 1254. [29] Al-Gailani B R M, McCreedy T. Chemical Communications, 2003, (1): 120. [30] Loncar-Tomaskovic L, Pustet N, Mrvos-Sermek D, et al. Chirality, 2001, 13(2): 81. [31] Dantan N, Frenzel W, Küppers S. Chromatographia, 2001, 54(3-4): 187. [32] GUO Ming-xing, GUO Hong-chen, WANG Xiang-sheng, et al(郭明星, 郭洪臣, 王祥生, 等). Chemical Journal of Chinese Universities(高等学校化学学报), 2005, 26(3): 527. [33] Liu D Q, Wu L M, Sun M J, et al. Journal of Pharmaceutical and Biomedical Analysis, 2007, 44(2): 320. [34] Guo C N, Shah R D, Dukor R K, et al. Analytical Chemistry, 2004, 76(23): 6956. [35] Guo C N, Shah R D, Dukor R K, et al. Applied Spectroscopy, 2005, 59(9): 1114.
|
[1] |
LI Shu-jie1, LIU Jie1, DENG Zi-ang1, OU Quan-hong1, SHI You-ming2, LIU Gang1*. Study of Germinated Rice Seeds by FTIR Spectroscopy Combined With Curve Fitting[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1832-1840. |
[2] |
ZHANG Yan-ru1, 2, SHAO Peng-shuai1*. Study on the Effects of Planting Years of Vegetable Greenhouse on the
Cucumber Qualties Using Mid-IR Spectroscopoy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1816-1821. |
[3] |
HUANG Bin, DU Gong-zhi, HOU Hua-yi*, HUANG Wen-juan, CHEN Xiang-bai*. Raman Spectroscopy Study of Reduced Nicotinamide Adenine Dinucleotide[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1679-1683. |
[4] |
SHI Wen-qiang1, XU Xiu-ying1*, ZHANG Wei1, ZHANG Ping2, SUN Hai-tian1, 3, HU Jun1. Prediction Model of Soil Moisture Content in Northern Cold Region Based on Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1704-1710. |
[5] |
WANG Gan-lin1, LIU Qian1, LI Ding-ming1, YANG Su-liang1*, TIAN Guo-xin1, 2*. Quantitative Analysis of NO-3,SO2-4,ClO-4 With Water as Internal Standard by Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1855-1861. |
[6] |
ZHU Zhao-zhou1*, YANG Xin-xin1, LI Jun1, HE Hui-jun2, ZHANG Zi-jing1, YAN Wen-rui1. Determination of Rare Earth Elements in High-Salt Water by ICP-MS
After Pre-Concentration Using a Chelating Resin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1862-1866. |
[7] |
WANG Yue1, 3, 4, CHEN Nan1, 2, 3, 4, WANG Bo-yu1, 5, LIU Tao1, 3, 4*, XIA Yang1, 2, 3, 4*. Fourier Transform Near-Infrared Spectral System Based on Laser-Driven Plasma Light Source[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1666-1673. |
[8] |
FENG Rui-jie1, CHEN Zheng-guang1, 2*, YI Shu-juan3. Identification of Corn Varieties Based on Bayesian Optimization SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1698-1703. |
[9] |
YU Zhi-rong, HONG Ming-jian*. Near-Infrared Spectral Quantitative Analysis Network Based on Grouped Fully Connection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1735-1740. |
[10] |
XIE Yu-yu1, 2, 3, HOU Xue-ling1, CHEN Zhi-hui2, AISA Haji Akber1, 3*. Density Functional Theory Studies on Structure and Spectra of Salidroside Molecule[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1786-1791. |
[11] |
ZHU Xiang1, 2*, YUAN Chao-sheng1, CHENG Xue-rui1, LI Tao1, ZHOU Song1, ZHANG Xin1, DONG Xing-bang1, LIANG Yong-fu2, WANG Zheng2. Study on Performances of Transmitting Pressure and Measuring Pressure of [C4mim][BF4] by Using Spectroscopic Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1674-1678. |
[12] |
WANG Ming-xuan, WANG Qiao-yun*, PIAN Fei-fei, SHAN Peng, LI Zhi-gang, MA Zhen-he. Quantitative Analysis of Diabetic Blood Raman Spectroscopy Based on XGBoost[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1721-1727. |
[13] |
YOU Gui-mei1, ZHANG Wen-jie1, CAO Zhen-wei2, HAN Xiang-na1*, GUO Hong1. Analysis of Pigments of Colored Paintings From Early Qing-Dynasty Fengxian Dian in the Forbidden City[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1874-1880. |
[14] |
MENG Fan-jia1, LUO Shi1, WU Yue-feng1, SUN Hong1, LIU Fei2, LI Min-zan1*, HUANG Wei3, LI Mu3. Characteristic Extraction Method and Discriminant Model of Ear Rot of Maize Seed Base on NIR Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1716-1720. |
[15] |
WANG Bin1, 2, ZHENG Shao-feng2, LI Wei-cai2, ZHONG Kang-hua2, GAN Jiu-lin1, YANG Zhong-min1, SONG Wu-yuan3*. Determination of Rare Earth Elements in Imported Copper Concentrate by Inductively Coupled Plasma Mass Spectrometry With High Matrix
Injection System[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1822-1826. |
|
|
|
|