|
|
|
|
|
|
Study on Performances of Transmitting Pressure and Measuring Pressure of [C4mim][BF4] by Using Spectroscopic Techniques |
ZHU Xiang1, 2*, YUAN Chao-sheng1, CHENG Xue-rui1, LI Tao1, ZHOU Song1, ZHANG Xin1, DONG Xing-bang1, LIANG Yong-fu2, WANG Zheng2 |
1. College of Physics and Electronic Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
2. Henan Key Laboratory of Magnetoelectronic Information Functional Materials, Zhengzhou University of Light Industry, Zhengzhou 450001, China
|
|
|
Abstract Diamond anvil cell (DAC) is a kind of high-pressure generator that is frequently used in the laboratory and plays an important role in the field of high-pressure research. When pressure-transmitting medium (PTM) in DAC can just provide non-hydrostatic pressure, it will be difficult to accurately measure the pressure of the sample by using the ruby fluorescence method. The same cases frequently emerge under ultra-high pressure conditions. If there is a material with dual functions of transmitting pressure and measuring pressure, the pressure values of the sample under non-hydrostatic conditions might be measured accurately according to the principle that the closer the positions are, the more similar the pressures are. Apparently, it is important to search for the material with dual functions of transmitting and measuring pressure. In this paper, a ruby particle and a small drop of ionic liquid [C4mim][BF4]were loaded into a DAC, a series of high-pressure environments were provided by compressing the [C4mim][BF4]. Simultaneously, the fluorescence spectrum of ruby and the Raman spectrum of [C4mim][BF4] was obtained under high pressures. By analyzing the positions of the R1 line of ruby, the pressure values of [C4mim][BF4] were obtained. By analyzing the widths of the R1 line of ruby, it was found that the hydrostaticand quasi-hydrostatic pressures provided by [C4mim][BF4] were in the ranges of 0~6.26 and 6.26~21.43 GPa, respectively. It could be speculated that [C4mim][BF4] can use as PTM in the pressure range of 0~21.43 GPa. In addition, [C4mim][BF4] is a liquid phase Ⅰ, liquid phase Ⅱ, amorphous phase I, and amorphous phase II in the ranges of 0~2.28, 2.28~6.26, 6.26~14.39, and 14.39~21.43 GPa, respectively. By analyzing the positions of ν(B-F) and ν(ring) as the characteristic Raman peaks from [C4mim][BF4], it was found that they followed linear changes with increasing pressure during the above four phases of [C4mim][BF4]. What’s more, the formulas of pressure and position of ν(B-F) and ν(ring) were given. The formulas are very important for [C4mim][BF4] to be a pressure gauge. To sum up, [C4mim][BF4] has the dual functions of transmitting pressure and measuring pressure and can use simultaneously as the PTM and the pressure gauge. The research results provided an important basis for accurate measurement of sample pressure in non-hydrostatic environments and provide a new solution to the inaccurate measurement of sample pressure under ultra-high pressure conditions.
|
Received: 2021-04-22
Accepted: 2021-06-28
|
|
Corresponding Authors:
ZHU Xiang
|
|
[1] LIU Jing(刘 景). Chinese Journal of High Pressure Physics (高压物理学报), 2020, 34(5): 157.
[2] Chen J, Cheng H, Zhou X, et al. Review of Scientific Instruments, 2021, 92(3): 033905.
[3] Klotz S, Chervin J C, Munsch P, et al. Journal of Physics D Applied Physics, 2009, 42(7): 075413.
[4] Ren J, Li J, Lv L, et al. Environmental Science and Pollution Research, 2021, 28: 12909.
[5] Yoshimura Y, Shigemi M, Takaku M, et al. Journal of Physical Chemistry B, 2015, 119(25): 8146.
[6] Yoshimura Y, Abe H, Takekiyo T, et al. Journal of Physical Chemistry B, 2013, 117(40): 12296.
[7] Pison L, Gomes M C C, Pádua A A H, et al. Journal of Chemical Physics, 2013, 139(5): 054510.
[8] Faria L, Nobrega M M, Temperini M, et al. Journal of Raman Spectroscopy, 2013, 44(3): 481.
[9] Mao H K, Xu J, Bell P M. Journal of Geophysical Research, 1986, 91(B5): 4673.
[10] Piermarini G J, Block S, Barnett J D. Journal of Applied Physics, 1973, 44: 5377.
[11] Su L, Zhu X, Wang Z, et al. Journal of Physical Chemistry B, 2012, 116(7): 2216.
[12] Li H N, Chen L C, Zhu X, et al. Journal of Solution Chemistry, 2017, 46(1): 3.
[13] Zhu X, Yuan C S, Li H N, et al. Journal of Molecular Structure, 2016, 1106(1106): 70.
[14] Berg R W. ChemInform, 2008, 39(4): 1045.
|
[1] |
WANG Gan-lin1, LIU Qian1, LI Ding-ming1, YANG Su-liang1*, TIAN Guo-xin1, 2*. Quantitative Analysis of NO-3,SO2-4,ClO-4 With Water as Internal Standard by Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1855-1861. |
[2] |
HUANG Bin, DU Gong-zhi, HOU Hua-yi*, HUANG Wen-juan, CHEN Xiang-bai*. Raman Spectroscopy Study of Reduced Nicotinamide Adenine Dinucleotide[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1679-1683. |
[3] |
WANG Ming-xuan, WANG Qiao-yun*, PIAN Fei-fei, SHAN Peng, LI Zhi-gang, MA Zhen-he. Quantitative Analysis of Diabetic Blood Raman Spectroscopy Based on XGBoost[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1721-1727. |
[4] |
YOU Gui-mei1, ZHANG Wen-jie1, CAO Zhen-wei2, HAN Xiang-na1*, GUO Hong1. Analysis of Pigments of Colored Paintings From Early Qing-Dynasty Fengxian Dian in the Forbidden City[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1874-1880. |
[5] |
LI Qing1, 2, XU Li1, 2, PENG Shan-gui1, 2, LUO Xiao1, 2, ZHANG Rong-qin1, 2, YAN Zhu-yun3, WEN Yong-sheng1, 2*. Research on Identification of Danshen Origin Based on Micro-Focused
Raman Spectroscopy Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1774-1780. |
[6] |
WANG Yi-ya1, WANG Yi-min1*, GAO Xin-hua2. The Evaluation of Literature and Its Metrological Statistics of X-Ray Fluorescence Spectrometry Analysis in China[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1329-1338. |
[7] |
WANG Zhong, WAN Dong-dong, SHAN Chuang, LI Yue-e, ZHOU Qing-guo*. A Denoising Method Based on Back Propagation Neural Network for
Raman Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1553-1560. |
[8] |
FU Qiu-yue1, FANG Xiang-lin1, ZHAO Yi2, QIU Xun1, WANG Peng1, LI Shao-xin1*. Research Progress of Pathogenic Bacteria and Their Drug Resistance
Detection Based on Surface Enhanced Raman Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1339-1345. |
[9] |
YAN Ling-tong, LI Li, SUN He-yang, XU Qing, FENG Song-lin*. Spectrometric Investigation of Structure Hydroxyl in Traditional Ceramics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1361-1365. |
[10] |
ZHAO Yong1, HE Men-yuan1, WANG Bo-lin2, ZHAO Rong2, MENG Zong1*. Classification of Mycoplasma Pneumoniae Strains Based on
One-Dimensional Convolutional Neural Network and
Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1439-1444. |
[11] |
YAN Peng-cheng1, 2, ZHANG Chao-yin2*, SUN Quan-sheng2, SHANG Song-hang2, YIN Ni-ni1, ZHANG Xiao-fei2. LIF Technology and ELM Algorithm Power Transformer Fault Diagnosis Research[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1459-1464. |
[12] |
LI Meng-meng1, TENG Ya-jun2, TAN Hong-lin1, ZU En-dong1*. Study on Freshwater Cultured White Pearls From Anhui Province Based on Chromaticity and Raman Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1504-1507. |
[13] |
ZHANG Yu-yang, CHEN Mei-hua*, YE Shuang, ZHENG Jin-yu. Research of Geographical Origin of Sapphire Based on Three-Dimensional Fluorescence Spectroscopy: A Case Study in Sri Lanka and Laos Sapphires[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1508-1513. |
[14] |
JIANG Xiao-yu1, 2, LI Fu-sheng2*, WANG Qing-ya1, 2, LUO Jie3, HAO Jun1, 2, XU Mu-qiang1, 2. Determination of Lead and Arsenic in Soil Samples by X Fluorescence Spectrum Combined With CARS Variables Screening Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1535-1540. |
[15] |
JIAO Ruo-nan, LIU Kun*, KONG Fan-yi, WANG Ting, HAN Xue, LI Yong-jiang, SUN Chang-sen. Research on Coherent Anti-Stokes Raman Spectroscopy Detection of
Microplastics in Seawater and Sand[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1022-1027. |
|
|
|
|