光谱学与光谱分析 |
|
|
|
|
|
Surface-Enhanced Raman Spectroscopy Study on the Interaction of 4,4’-Bipyridine and Zn Electrode |
GU Ren-ao,SHEN Xiao-ying,CUI Yan,GU Wei |
Department of Chemistry, Suzhou University, Suzhou 215006, China |
|
|
Abstract In the present paper, surface enhanced Raman spectroscopy (SERS) was employed to study the interaction of 4,4’-bipyridine(BiPy) and Zn electrode. The results indicate that BiPy is adsorced with a vertical (or incline) orientation on the Zn electrode via one N atom of BiPy, and the two pyridine rings still remain on the same plane. BiPy has relatively stronger interaction with zinc metal than pyridine. The larger Raman scattering cross section and the existence of the two pyridine rings make it easy for 4,4’-BiPy to have stronger interaction with zinc metal.
|
Received: 2004-12-08
Accepted: 2005-03-28
|
|
Corresponding Authors:
GU Ren-ao
|
|
Cite this article: |
GU Ren-ao,SHEN Xiao-ying,CUI Yan, et al. Surface-Enhanced Raman Spectroscopy Study on the Interaction of 4,4’-Bipyridine and Zn Electrode[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2006, 26(03): 452-454.
|
|
|
|
URL: |
https://www.gpxygpfx.com/EN/Y2006/V26/I03/452 |
[1] Eddowes M J, Hill H A O. J. Am. Chem. Soc., 1979, 101: 4461. [2] Albery W J, Eddowes M J, Hill H A O, et al. J. Am. Chem. Soc., 1981, 103: 3904. [3] Creighton J A. Surf. Sci., 1986, 173: 665. [4] Kambhampati P, Creighton A. Surf. Sci., 1999, 427-428: 115. [5] Taniguchi I, Iseki M Y H, Yasukouchi K, et al. J. Electroanal. Chem., 1985, 186: 299. [6] Cotton T M, Vavra M. Chem. Phys. Lett., 1984, 106: 491. [7] Lu T H, Cotton T M, Birke R L, et al. Langmuir, 1989, 5: 406. [8] LIN Xu-feng(林旭峰), Master Dissertation, Xiamen University(厦门大学理学硕士学位论文), 2003. [9] Gu R A, Shen X Y, Liu G, et al. J. Phys. Chem. B, 2004,108: 45; 17519. [10] Tian Z Q, Ren B, Mao B W. J. Phys. Chem. B, 1997, 101: 1338. [11] Toacli A, Akyüz S. Spectrochim. Acta A, 1995, 51: 633. [12] SHEN Xiao-ying, LIU Guo-kun, GU Ren-ao, TIAN Zhong-qun(沈晓英, 刘国坤, 顾仁敖, 田中群). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2005,25(9):1418.
|
[1] |
XING Hai-bo1, ZHENG Bo-wen1, LI Xin-yue1, HUANG Bo-tao2, XIANG Xiao2, HU Xiao-jun1*. Colorimetric and SERS Dual-Channel Sensing Detection of Pyrene in
Water[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 95-102. |
[2] |
LU Wen-jing, FANG Ya-ping, LIN Tai-feng, WANG Hui-qin, ZHENG Da-wei, ZHANG Ping*. Rapid Identification of the Raman Phenotypes of Breast Cancer Cell
Derived Exosomes and the Relationship With Maternal Cells[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3840-3846. |
[3] |
GUO He-yuanxi1, LI Li-jun1*, FENG Jun1, 2*, LIN Xin1, LI Rui1. A SERS-Aptsensor for Detection of Chloramphenicol Based on DNA Hybridization Indicator and Silver Nanorod Array Chip[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3445-3451. |
[4] |
LI Wen-wen1, 2, LONG Chang-jiang1, 2, 4*, LI Shan-jun1, 2, 3, 4, CHEN Hong1, 2, 4. Detection of Mixed Pesticide Residues of Prochloraz and Imazalil in
Citrus Epidermis by Surface Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3052-3058. |
[5] |
ZHAO Ling-yi1, 2, YANG Xi3, WEI Yi4, YANG Rui-qin1, 2*, ZHAO Qian4, ZHANG Hong-wen4, CAI Wei-ping4. SERS Detection and Efficient Identification of Heroin and Its Metabolites Based on Au/SiO2 Composite Nanosphere Array[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3150-3157. |
[6] |
SU Xin-yue1, MA Yan-li2, ZHAI Chen3, LI Yan-lei4, MA Qian-yun1, SUN Jian-feng1, WANG Wen-xiu1*. Research Progress of Surface Enhanced Raman Spectroscopy in Quality and Safety Detection of Liquid Food[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2657-2666. |
[7] |
CHAI Lin-lin, Areyi Mulati, Shawket Abliz*. Analysis the Adsorption Behaviors of Acetic Acid Modified Sand Grains for Lead Ions by Atomic Absorption Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2775-2778. |
[8] |
ZHAO Yu-wen1, ZHANG Ze-shuai1, ZHU Xiao-ying1, WANG Hai-xia1, 2*, LI Zheng1, 2, LU Hong-wei3, XI Meng3. Application Strategies of Surface-Enhanced Raman Spectroscopy in Simultaneous Detection of Multiple Pathogens[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2012-2018. |
[9] |
CHENG Chang-hong1, XUE Chang-guo1*, XIA De-bin2, TENG Yan-hua1, XIE A-tian1. Preparation of Organic Semiconductor-Silver Nanoparticles Composite Substrate and Its Application in Surface Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2158-2165. |
[10] |
LI Chun-ying1, WANG Hong-yi1, LI Yong-chun1, LI Jing1, CHEN Gao-le2, FAN Yu-xia2*. Application Progress of Surface-Enhanced Raman Spectroscopy for
Detection Veterinary Drug Residues in Animal-Derived Food[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1667-1675. |
[11] |
HUANG Xiao-wei1, ZHANG Ning1, LI Zhi-hua1, SHI Ji-yong1, SUN Yue1, ZHANG Xin-ai1, ZOU Xiao-bo1, 2*. Detection of Carbendazim Residue in Apple Using Surface-Enhanced Raman Scattering Labeling Immunoassay[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1478-1484. |
[12] |
LU Yan-hua, XU Min-min, YAO Jian-lin*. Preparation and Photoelectrocatalytic Properties Study of TiO2-Ag
Nanocomposites[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1112-1116. |
[13] |
WANG Yi-tao1, WU Cheng-zhao1, HU Dong1, SUN Tong1, 2*. Research Progress of Plasticizer Detection Based on Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1298-1305. |
[14] |
LI Wei1, 2, HE Yao1, 2, LIN Dong-yue2, DONG Rong-lu2*, YANG Liang-bao2*. Remove Background Peak of Substrate From SERS Signals of Hair Based on Gaussian Mixture Model[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 854-860. |
[15] |
ZHENG Li-zhen1, 2, CHENG Cong2, MA Wen-hua2, WANG Zhuo-rui2, HU Dao-dao2*. Online Detection of Water Forms and Moisture Volatilization Behavior in Earthen Relics Based on FE Fluorescence Probe[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 383-388. |
|
|
|
|