|
|
|
|
|
|
A Static Sample Cell System for Gas Absorbance Spectrum Measurement Under High Temperature |
HUANG Wen-jian, ZHANG Ming-ke, GAO Guang-zhen*, WANG Xuan, YANG Yu-bing, CAI Ting-dong* |
School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
|
|
|
Abstract In the practical high-temperature gas detection case, the measured results of the gas spectral line parameters are often affected by temperature changes. Sometimes, it is even difficult to achieve real-time online measurement.Therefore, this paper aims to design and process a new high-temperature sample cell to simulate a high-temperature environment and build a tunable diode laser absorption spectrum measurement system to detect the spectrums of the target gas in a high-temperature environment. In this way, the accurate detection of spectral line parameters can be achieved.In the design of a high-temperature sample cell, Comsol was used to simulate and analyze the solid thermal conductivity of various materials to determine the optimal processing materials and size. The results show that good properties of the high-temperature sample cell are obtained. It can work in the temperature range of 300~1 000 K and the pressure range of -0.1~10 atm. The maximum temperature deviation of the sample cell at 1 000 K is 20 K. The measured leakage rates at 300 and 1 000 K are 5 and 60 Pa·min-1, respectively.This paper uses a distributed feedback (DFB) semiconductor laser with a center wavelength of 1 573 nm as the light source to measure the partial high-temperature spectrums of CO molecules with relatively accurate parameters in the HITRAN2016 database. The comparison between the spectral line parameters obtained from the inversion and those in the HITRAN database indicates that the error is within 5%. The good performance of the designed high-temperature sample cell was proved, which can help in the measurement of gas spectral line parameters in high-temperature environments.
|
Received: 2023-02-18
Accepted: 2023-10-16
|
|
Corresponding Authors:
GAO Guang-zhen, CAI Ting-dong
E-mail: ggz@jsnu.edu.cn; caitingdong@126.com
|
|
[1] Hansen N, Cool T A, Westmoreland P R, et al. Progress in Energy and Combustion Science, 2009, 35(2): 168.
[2] Witezl O, Klein A, Meffert C, et al. Optics Express, 2013, 21(17): 19951.
[3] PENG Wei, YANG Sheng-wei, HE Tian-bo, et al(彭 伟, 杨生威, 何天博, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2023, 43(3): 698.
[4] Liu K, Wang L, Tan T, et al. Sensors and Actuators B: Chemical, 2015, 220: 1000.
[5] Deng B T, Sima C, Xiao Y F, et al. Optics and Lasers in Engineering, 2022, 151: 106906.
[6] Nasim H, Jamil Y. Optics and Laser Technology, 2014, 56: 211.
[7] Goldenstein C S, Spearrin R M, Jeffries J B, et al. Progress in Energy and Combustion Science, 2016, 60: 132.
[8] Klingbeil A E, Jeffries J B, Hanson R K. Measurement Science and Technology, 2006, 17(7): 1950.
[9] He D, Peng Z M, Ding Y J. Fuel, 2021, 288: 118980.
[10] Bürkle S, Biondo L, Ding C P, et al. Flow, Turbulence and Combustion, 2018, 101(1): 139.
[11] Popa C, Banita S, Patachia M, et al. Romanian Reports in Physis, 2015, 67(3): 946.
[12] ZHANG Rui, WANG Biao, XUE Jin-bo, et al(张 瑞, 王 彪, 薛金波,等). Laser Journal(激光杂志), 2022, 43(10): 30.
[13] Liu N W, Xu L G, Zhou S, et al. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 236: 106587.
[14] Qiao S D, Ma Y F, Patimisco P, et al. Optics Letters, 2021, 46(5): 977.
[15] SONG Zhen-ming, LI Ji-dong, PENG Zhi-min, et al(宋振明,李济东,彭志敏,等). Laser & Infrared(激光与红外),2022, 52(4): 586.
[16] KAN Rui-feng, XIA Hui-hui, XU Zhen-yu, et al(阚瑞峰,夏晖晖,许振宇,等). Chinese Journal of Lasers(中国激光),2018,45(9):0911005.
[17] Xin F X, Li J, Guo J J, et al. Sensors, 2021, 21(5): 1722.
[18] Docquier N, Candel S. Progress in Energy and Combustion Science, 2002, 28(2): 107.
[19] CHEN Jiu-ying, LIU Jian-guo, HE Ya-bai, et al(陈玖英, 刘建国, 何亚柏, 等). Acta Physica Sinica(物理学报), 2013, 62(22): 224206.
[20] FU Na, ZHANG Xi(伏 娜, 张 晞). Journal of Beijing University of Aeronautics and Astronautics(北京航空航天大学学报), 2019, 45(4): 735. |
[1] |
ZHOU Chuang, ZHANG Qi-jin, LI Su-wen*, LUO Jing, MOU Fu-sheng*. Investigation of a Ground-Based MAX-DOAS System for Retrieving
Vertical Column Density of Atmospheric Water Vapor[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(08): 2395-2400. |
[2] |
HUANG Wei, SUN Hao, LIU Zhi-yuan, WANG Kun, SU Ming-xu, YANG Hui-nan*. Novel System Development for Film Thickness Measurement of Oil
on Water[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(07): 2018-2023. |
[3] |
QIAN Yuan-yuan1, 2, LUO Yu-han1, ZHOU Hai-jin1, DOU Ke1, CHANG Zhen1, YANG Tai-ping1, XI Liang1, TANG Fu-ying1, 2, XU Zi-qiang1, 2, SI Fu-qi1*. Research on Retrieval of Tropospheric Formaldehyde Profiles in Heshan Area From MAX-DOAS Measurements[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(06): 1781-1788. |
[4] |
HU Chun-qiao1, 2, LUO Yu-han1*, SONG Run-ze1, 2, CHANG Zhen1, XI Liang1, ZHOU Hai-jin1, SI Fu-qi1. Study on Ground-Based Fast IDOAS for Monitoring the Distribution of Pollutants Discharged From Ship[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(06): 1537-1545. |
[5] |
ZENG Hui, WEN Peng, YANG Guo-ming, ZHU Xing-ying, OU Dong-bin. Mid-IR Laser Absorption Diagnosis on Flow Characteristics for Mars
Entry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(05): 1277-1282. |
[6] |
ZHANG Xue-jun1, CHEN Qin-gen2, YANG Zhan1, DENG Qin1, HE Shuan-ling3, PENG Zhi-min3*. On Line Simultaneous Measurement of CO/CO2/H2S Concentration Based on Laser Absorption Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(05): 1412-1416. |
[7] |
WANG Peng1,HE Tao1,BAI Jin-feng2,FENG Xiao-juan1,KOU Shao-lei1,LÜ Ming-chao3,ZHAO Hao1,DENG Yi-rong3,FAN Hui4,GAN Li-ming1*. Optimization of Parameters for Flame Atomic Absorption Spectrometry Analysis of Gold Based on Particle Swarm Optimization Algorithm Based on Orthogonal Experiment[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(04): 1045-1051. |
[8] |
LI Yu1, BI Wei-hong1, 2*, SUN Jian-cheng1, JIA Ya-jie1, FU Guang-wei1, WANG Si-yuan1, WANG Bing3. Rapid Detection of Total Organic Carbon Concentration in Water Using
UV-Vis Absorption Spectra Combined With Chemometric Algorithms[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(03): 722-730. |
[9] |
ZHENG Pei-chao, ZHOU Chun-yan, WANG Jin-mei*, YIN Yi-tong, ZHANG Li, LÜ Qiang, ZENG Jin-rui, HE Yu-xin. Study on the Detection Method of COD in Surface Water Based on UV-Vis Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(03): 707-713. |
[10] |
ZHANG Juan1, LI Ke-xin2, QIN Dong-mei1, BAO De-qing1, 2, WANG Chao-wen2*. Spectroscopic Characteristics and Color Genesis of Yellowish-Green
Montebrasite[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(03): 777-783. |
[11] |
ZHANG Xiao-li1, WANG Yu1, 2*, XI Liang2, ZHOU Hai-jin2, CHANG Zhen2, SI Fu-qi2. Application Research of Airborne Optical Fiber Imaging Differential
Absorption Spectrometer in Measuring Regional Air Pollution[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(02): 310-317. |
[12] |
GU Yi-lu1, 2,PEI Jing-cheng1, 2*,ZHANG Yu-hui1, 2,YIN Xi-yan1, 2,YU Min-da1, 2, LAI Xiao-jing1, 2. Gemological and Spectral Characterization of Yellowish Green Apatite From Mexico[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 181-187. |
[13] |
BAI Xi-lin1, 2, PENG Yue1, 2, ZHANG Xue-dong1, 2, GE Jing1, 2*. Ultrafast Dynamics of CdSe/ZnS Quantum Dots and Quantum
Dot-Acceptor Molecular Complexes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 56-61. |
[14] |
ZHENG Pei-chao, YIN Yi-tong, WANG Jin-mei*, ZHOU Chun-yan, ZHANG Li, ZENG Jin-rui, LÜ Qiang. Study on the Method of Detecting Phosphate Ions in Water Based on
Ultraviolet Absorption Spectrum Combined With SPA-ELM Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 82-87. |
[15] |
LIU Jia, ZHENG Ya-long, WANG Cheng-bo, YIN Zuo-wei*, PAN Shao-kui. Spectra Characterization of Diaspore-Sapphire From Hotan, Xinjiang[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 176-180. |
|
|
|
|