|
|
|
|
|
|
Application Research of Airborne Optical Fiber Imaging Differential
Absorption Spectrometer in Measuring Regional Air Pollution |
ZHANG Xiao-li1, WANG Yu1, 2*, XI Liang2, ZHOU Hai-jin2, CHANG Zhen2, SI Fu-qi2 |
1. Institutes of Physical Science and Information Technology, Anhui University, Hefei 230031, China
2. Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics,Chinese Academy of Sciences, Hefei 230031, China
|
|
|
Abstract Air pollution in China presents regional and complex characteristics. Carrying out stereo monitoring of the regional distribution of polluted gases can help us understand the status quo of the atmospheric environment in a timely manner, study and analyze various factors affecting air quality, and guide air pollution control measures. The airborne imaging differential optical absorption spectroscopy is one of the effective remote sensing methods for the regional distribution of polluted gases. This technology has a large observation area and a high coverage rate, which can provide a detailed regional distribution of polluted gases and realize the visual detection of pollution distribution and transmission. In the past, the airborne imaging differential absorption spectrometer used an overall design that needed to occupy the optical observation window of the aircraft. The optical fiber imaging differential absorption spectrometer introduced in this paper adopts the optical fiber beam transmission method, which needs minimal requirements during installation, greatly facilitates the installation and debugging on the aircraft, and meets the requirements of airworthiness equipment certification. This system uses a special multi-core fiber bundle combined with a Littow-offner structure spectral imaging system, which has the advantages of high spectral imaging resolution, large field of view, and compact structure. The paper introduces the equipment performance parameters in detail, and the verification experiment is carried out using the system around Wuhu City. A data processing algorithm is proposed for the optical fiber imaging differential absorption spectrometer in the application process. In this experiment, the slanted column concentration of polluting gas is obtained by retrieving the collected scattered solar light, and the air quality factor is calculated using the atmospheric radiative transmission model. Then, convert the slanted column concentration into a path-independent vertical column concentration. Finally, the results are displayed on the map combined with the aircraft angles and positions. This equipment can quickly obtain the concentration distribution of NO2 and SO2 over Wuhu City and its surrounding areas realize the rapid location of pollution sources and analyze the transmission process. According to the results, there are 4 high-value points of NO2 vertical column concentration and 2 high-value points of SO2 vertical column concentration in the experimental area. According to the map, there are industrials around the high-value points, and the results are consistent with the actual situation. Finally, we evaluated the precision between satellite data and airborne data. They have a positive correlation with a correlation coefficient of 0.77. The results show that the scheme of optical fiber imaging differential absorption spectrometer is verified, which can provide a basis popularising air pollution gas remote sensing technology and compensate for the shortage on the spatial scale in ground station and the shortage on the time scale in satellite test.
|
Received: 2022-06-21
Accepted: 2022-12-09
|
|
Corresponding Authors:
WANG Yu
E-mail: 19067@ahu.edu.cn
|
|
[1] Davis Z, Baray S, McLinden CA, et al. Atmospheric Chemistry and Physics, 2019, 19(22): 13871.
[2] Perner D, Ehhalt D H, Patz H W, et al. Geophysical Research Letters, 1976, 3(8): 466.
[3] Platt U, Perner D, and Patz H W. Journal of Geophysical Research, 1979, 84(C10): 6329.
[4] Platt U. Atmospheric Environment, 1978, 12(1-3): 363.
[5] Platt U, Perner D, Winer A M, et al. Geophysical Research Letters, 1980, 7(1): 89.
[6] ZHOU Bin, LIU Wen-qing , QI Feng, et al(周 斌,刘文清,齐 峰,等). Acta Physica Sinica(物理学报),2001, 50(9): 1818.
[7] Kim K H,Kim M Y. Atmospheric Environment, 2001, 35(24): 4059.
[8] XIE Pin-hua, LIU Wen-qing, ZHENG Zhao-hui, et al(谢品华,刘文清,郑朝晖,等) . Acta Photonica Sinica(光子学报),2000, 29(3): 271.
[9] Wagner T, Otten C, Pfeilsticker K, et al. Geophysical Research Letters, 2000, 27(21): 3441.
[10] SI Fu-qi, XIE Pin-hua, Heue K P, et al(司福棋,谢品华,Klaus-Peter Heue,等). Acta Physica Sinica(物理学报),2008, 57(9): 6018.
[11] SI Fu-qi, XIE Pin-hua, LIU Yu, et al(司福棋,谢品华,刘 宇,等). Acta Optica Sinica(光学学报),2009, 19(9): 2458.
[12] Wang P, Richter A, Bruns M, et al. Atmospheric Chemistry and Physics, 2006, 6: 329.
[13] Heue K P, Richter A, Bruns M, et al. Atmospheric Chemistry and Physics, 2005, 5(4): 1039.
[14] Schönhardt A, Altube P, Gerilowski K, et al. Atmospheric Measurement Techniques, 2015, 8(12): 5113.
[15] Thomas W, Hegels E, Slijkhuis S, et al. Geophysical Research Letters, 1998, 25(9): 1317.
[16] Lauer A, Dameris M, Richter A, et al. Atmospheric Chemistry and Physics, 2002, 2(1): 67.
[17] LIU Jin, SI Fu-qi, ZHOU Hai-jin, et al(刘 进,司福棋,周海金,等). Acta Physica Sinica(物理学报),2015, 64(3): 034217.
[18] LIU Jin, SI Fu-qi, ZHOU Hai-jin, et al(刘 进,司福祺,周海金,等). Acta Optica Sinica(光学学报),2015, 35(6): 0630003.
[19] YANG Dong-shang, ZENG Yi, XI Liang, et al(杨东上,曾 议,奚 亮,等). Acta Optica Sinica(光学学报),2020, 40(5): 0501002.
[20] Xi Liang, Si Fuqi, Jiang Yu, et al. Atmospheric Measurement Techniques, 2021, 4(1): 435.
[21] XI Liang, SI Fu-qi, JIANG Yu, et al(奚 亮,司福祺,江 宇,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2022, 42(2): 627.
|
[1] |
PU Gui-juan1, 2, CHENG Si-yang3*, LI Song-kui4, LÜ Jin-guang2, CHEN Hua5, MA Jian-zhong3. Spectral Inversion and Variation Characteristics of Tropospheric NO2
Column Density in Lhasa, Tibet[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1725-1730. |
[2] |
TIAN Xin1, 3, REN Bo3, 5, XIE Pin-hua1, 3, 4, 5, MOU Fu-sheng2*, XU Jin3, LI Ang3, LI Su-wen2, ZHENG Jiang-yi3LI Xiao-mei3, REN Hong-mei3, HUANG Xiao-hui1, PAN Yi-feng1, TIAN Wei1. Study on Vertical Distribution of Atmospheric HONO in Winter Based on Multi-Axis Differential Absorption Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(07): 2039-2046. |
[3] |
ZHU Peng-cheng1, LIU Hao-ran1*, JI Xiang-guang2, LI Qi-hua1, LIU Guo-hua1, TIAN Yuan1, XU Heng1. Study on Measurement of Troposphereic NO2 in Beijing by MAX-DOAS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(07): 2153-2158. |
[4] |
ZHONG Ming-yu1, 2, 3, ZHOU Hai-jin2, SI Fu-qi2*, WANG Yu2, DOU Ke2, SU Jing-ming1, 2, 3. Reconstruction of Stack Plume Based on Imaging Differential Absorption Spectroscopy and Compressed Sensing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(06): 1708-1712. |
[5] |
ZHANG Ying-hua1, 2, 3, LI Ang1*, XIE Pin-hua1, HUANG Ye-yuan1, HU Zhao-kun1, ZHANG Chao-gang1. Ultraviolet Two-Dimensional Non-Dispersive Imaging of SO2 Column Density in Power Plant Plume[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(03): 688-693. |
[6] |
WU Zi-yang1, 2, XIE Pin-hua1, 2, 3*, XU Jin2, LI Ang2, ZHANG Qiang1, 2, HU Zhao-kun2, LI Xiao-mei2, TIAN Xin1, 2. Study on the Distribution of NO2 Slant Column Density in Atmospheric Boundary Layer of Hefei City Based on Imaging Differential Absorption Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(03): 720-726. |
[7] |
CHENG Si-yang1, MA Jian-zhong1*, ZHOU Huai-gang2, JIN Jun-li3, LIU Yan4, DONG Fan2, ZHOU Li-yan2, YAN Peng1, 3. Spectral Inversion and Characteristics of NO2 Column Density at Shangdianzi Regional Atmospheric Background Station[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(11): 3470-3475. |
[8] |
ZU Wen-chuan1, 2, WANG Yu2*, ZHANG Yu-xiang2, LI Bing-ning2, LIU Cong2, REN Min2 . Detection of Sulfur Dioxide in Preserved Fruits with High Resolution Continuum Source Atomic Absorption Spectrometry Assisted with Distillation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(04): 1221-1224. |
[9] |
WANG Xiao-wei1, LIU Jing-fu2, GUAN Hong3, WANG Xiao-yan1, SHAO Bing1*, ZHANG Jing1, LIU Li-ping1, ZHANG Ni-na1. Determination of Total Sulfur Dioxide in Chinese Herbal Medicines via Triple Quadrupole Inductively Coupled Plasma Mass Spectrometry [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(02): 527-531. |
[10] |
ZHENG Hai-ming, LI Guang-jie, WU Hao . Study on Differential Optical Absorption Spectroscopy Data Processing Based on Chirp-Z Transformation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(06): 1633-1638. |
[11] |
GONG Yi-long, YAN Li* . Building Change Detection Based on Multi-Level Rules Classification with Airborne LiDAR Data and Aerial Images [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(05): 1325-1330. |
[12] |
LIU Jin, SI Fu-qi*, ZHOU Hai-jin, ZHAO Min-jie, DOU Ke, LIU Wen-qing . Research on the NO2 Mean Concentration Measurement with Target Differential Optical Absorption Spectroscopy Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33(04): 895-898. |
[13] |
ZHOU Jie,ZHANG Shi-liang. Synchronous Measurement of Concentrations of Nitric Oxide and Nitric Dioxide in Flue Gas by Ultraviolet Absorption Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2008, 28(04): 870-874. |
[14] |
MAO Min-juan1,2,ZHANG Yin-chao1,FANG Hai-tao1,QI Fu-di1,SHAO Shi-sheng1,HU Huan-ling1,ZHOU Jun1. Inversion Results of the Atmospheric Environment Detecting Airborne Lidar in Qingdao, Bohai and Yellow Sea Area[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2008, 28(04): 834-838. |
[15] |
GAO Min-guang,LIU Wen-qing,ZHANG Tian-shu,LIU Jian-guo,LU Yi-huai,WANG Ya-ping,XU Liang, ZHU Jun,CHEN Jun . Remote Sensing of Atmospheric Trace Gas by Airborne Passive FTIR[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2006, 26(12): 2203-2206. |
|
|
|
|