|
|
|
|
|
|
Adsorption Characteristics of Marine Contaminant Polychlorinated Biphenyls Based on Surface-Enhanced Raman Spectroscopy |
SONG Hong-yan, ZHAO Hang, YAN Xia, SHI Xiao-feng, MA Jun* |
Optics & Optoelectronics Laboratory, Ocean University of China, Qingdao 266100, China
|
|
|
Abstract Polychlorinated biphenyls (PCBs) in marine pollution monitoring is widely attention. In this paper, surface-enhanced Raman spectroscopy (SERS) and density functional theory (DFT) methods were used to investigate the Raman spectra differences of four representatives PCBs (PCB15, PCB28, PCB47 and PCB77) and their adsorption properties on gold nanoparticles. The influence of different adsorption characteristics on SERS quantitative detection was also analyzed. Firstly, the Raman spectra and vibration mode contributions of PCBs were calculated and compared with the measured results to assign the Raman peaks. Then, the PCBs-Au adsorption system was constructed and its binding energy and molecular spatial structure changes before and after adsorption were calculated to predict the adsorption characteristics of molecules on the gold substrate. Finally, the gold colloid was used as the SERS enhanced substrate for SERS detection to reflect the influence of adsorption characteristics on quantitative analysis. The results showed that the calculated results agreed with the measured spectra. The common characteristic peaks of PCBs included bridge bond stretching vibration peak (around 1 290 cm-1), ring breathing vibration peak (around 1 000 cm-1), and ring stretching vibration peak (around 1590 cm-1). The difference of substituted position of Cl atom has a significant effect on Raman vibration, which eventually complicate the vibration peaks of the C—Cl bond and C—H bond. The adsorption capacity from high to low was PCB15 (-6.46 kcal·mol-1), PCB28 (-3.01 kcal·mol-1), PCB77 (-1.95 kcal·mol-1) and PCB47 (-0.31 kcal·mol-1), and the number of substituted chlorine and the ortho-substitution of Cl atom decrease the binding energy and the adsorption form of the molecule on the gold substrate. The increase of the number of ortho-substitutions of the bridge bond leads to the increase of steric hindrance, which hinders the adsorption of molecules. The adsorption characteristics affected the SERS quantification. There was a good linear relationship between the SERS peak intensity and concentration. Molecules with strong adsorption ability in a water environment are more likely to reach the saturation state first, and have the lowest detection concentration. The above conclusion laid a theoretical foundation for SERS technology to detect and identify PCBs in the marine environments and for quantitative analysis.
|
Received: 2021-02-21
Accepted: 2021-05-06
|
|
Corresponding Authors:
MA Jun
E-mail: majun@ouc.edu.cn
|
|
[1] WANG Guo-guang, LIU Qiao-ling, FENG Li-juan, et al(王国光,刘巧灵,冯丽娟,等). Scientia Sinica Chimica(中国科学: 化学), 2017, 47(11): 1284.
[2] LIU Xing, SUN He-lin, JIANG Pei-yu, et al(刘 星,孙禾琳,蒋培宇,等). Environmental Chemistry(环境化学), 2020, 39(7): 2029.
[3] Shi X, Liu S, Han X, et al. Appl. Spectrosc., 2015, 69(5): 574.
[4] HAN Si-qin-gao-wa, ZHANG Chen, CHEN Xin-xuan, et al(韩斯琴高娃, 张 晨, 陈薪璇, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2020, 40(7): 2073.
[5] Jency D A, Umadevi M, Sathe G V. J. Raman. Spectrosc., 2015, 46(4): 377.
[6] Rindzevicius T, Barten J, Vorobiev M, et al. Vib. Spectrosc., 2017, 90: 1.
[7] Lee D, Hussain S, Yeo J, et al. Spectrochim. Acta A: Mol. Biomol. Spectrosc., 2021, 247: 119064.
[8] WU Yuan-fei, LI Ming-xue, ZHOU Jian-zhang, et al(吴元菲,李明雪,周剑章,等). Acta. Phys. Chim. Sin.(物理化学学报), 2017, 33(3): 530.
[9] Wang M, Liu P, Wang Y, et al. J. Colloid. Interface. Sci., 2015, 447: 1.
[10] Pan W, Lai Y, Wang R, et al. J. Raman Spectrosc., 2014, 45(1): 54.
[11] Frens G. Nature. Phys. Science, 1973, 241: 20.
[12] CAO Mei-juan, CHEN Wen-kai, LIU Shu-hong, et al(曹梅娟,陈文凯,刘书红,等). Acta Physico-Chimica Sinica(物理化学学报), 2006, 22(1): 11.
[13] Molina L M, López M J, Alonso J A. Chem. Phys. Lett., 2017, 684: 91.
|
[1] |
FAN Ping-ping,LI Xue-ying,QIU Hui-min,HOU Guang-li,LIU Yan*. Spectral Analysis of Organic Carbon in Sediments of the Yellow Sea and Bohai Sea by Different Spectrometers[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 52-55. |
[2] |
BAI Xi-lin1, 2, PENG Yue1, 2, ZHANG Xue-dong1, 2, GE Jing1, 2*. Ultrafast Dynamics of CdSe/ZnS Quantum Dots and Quantum
Dot-Acceptor Molecular Complexes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 56-61. |
[3] |
YANG Chao-pu1, 2, FANG Wen-qing3*, WU Qing-feng3, LI Chun1, LI Xiao-long1. Study on Changes of Blue Light Hazard and Circadian Effect of AMOLED With Age Based on Spectral Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 36-43. |
[4] |
XING Hai-bo1, ZHENG Bo-wen1, LI Xin-yue1, HUANG Bo-tao2, XIANG Xiao2, HU Xiao-jun1*. Colorimetric and SERS Dual-Channel Sensing Detection of Pyrene in
Water[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 95-102. |
[5] |
BAO Hao1, 2,ZHANG Yan1, 2*. Research on Spectral Feature Band Selection Model Based on Improved Harris Hawk Optimization Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 148-157. |
[6] |
LU Wen-jing, FANG Ya-ping, LIN Tai-feng, WANG Hui-qin, ZHENG Da-wei, ZHANG Ping*. Rapid Identification of the Raman Phenotypes of Breast Cancer Cell
Derived Exosomes and the Relationship With Maternal Cells[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3840-3846. |
[7] |
LI Qi-chen1, 2, LI Min-zan1, 2*, YANG Wei2, 3, SUN Hong2, 3, ZHANG Yao1, 3. Quantitative Analysis of Water-Soluble Phosphorous Based on Raman
Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3871-3876. |
[8] |
WAN Mei, ZHANG Jia-le, FANG Ji-yuan, LIU Jian-jun, HONG Zhi, DU Yong*. Terahertz Spectroscopy and DFT Calculations of Isonicotinamide-Glutaric Acid-Pyrazinamide Ternary Cocrystal[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3781-3787. |
[9] |
LIANG Jin-xing1, 2, 3, XIN Lei1, CHENG Jing-yao1, ZHOU Jing1, LUO Hang1, 3*. Adaptive Weighted Spectral Reconstruction Method Against
Exposure Variation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3330-3338. |
[10] |
GUO He-yuanxi1, LI Li-jun1*, FENG Jun1, 2*, LIN Xin1, LI Rui1. A SERS-Aptsensor for Detection of Chloramphenicol Based on DNA Hybridization Indicator and Silver Nanorod Array Chip[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3445-3451. |
[11] |
ZHANG Yan-dong1, WU Xiao-jing1*, LI Zi-xuan1, CHENG Long-jiu2. Two-Dimensional Infrared Spectroscopic Study of Choline
Chloride/Glycerin Solution Disturbed by Temperature[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3047-3051. |
[12] |
LI Wen-wen1, 2, LONG Chang-jiang1, 2, 4*, LI Shan-jun1, 2, 3, 4, CHEN Hong1, 2, 4. Detection of Mixed Pesticide Residues of Prochloraz and Imazalil in
Citrus Epidermis by Surface Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3052-3058. |
[13] |
ZHAO Ling-yi1, 2, YANG Xi3, WEI Yi4, YANG Rui-qin1, 2*, ZHAO Qian4, ZHANG Hong-wen4, CAI Wei-ping4. SERS Detection and Efficient Identification of Heroin and Its Metabolites Based on Au/SiO2 Composite Nanosphere Array[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3150-3157. |
[14] |
YU De-guan1, CHEN Xu-lei1, WENG Yue-yue2, LIAO Ying-yi3, WANG Chao-jie4*. Computational Analysis of Structural Characteristics and Spectral
Properties of the Non-Prodrug-Type Third-Generation
Cephalosporins[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3211-3222. |
[15] |
SU Xin-yue1, MA Yan-li2, ZHAI Chen3, LI Yan-lei4, MA Qian-yun1, SUN Jian-feng1, WANG Wen-xiu1*. Research Progress of Surface Enhanced Raman Spectroscopy in Quality and Safety Detection of Liquid Food[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2657-2666. |
|
|
|
|