|
|
|
|
|
|
A Neural Network Recognition Method for Garnets Subclass Based on Hyper Spectroscopy |
LIU Ting-yue1, DAI Jing-jing2*, TIAN Shu-fang1 |
1. China University of Geosciences (Beijing), Beijing 100083, China
2. MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China |
|
|
Abstract Hyperspectral technology is a rapid, nondestructive and accurate means of mineral detection, which can clearly reflect mineral chemical composition change. Garnets have the characteristic of three diagnostic peaks in the thermal infrared wavebands, and the wavelength positions of the reflection peaks are closely related to the chemical composition, so the subclass classification of garnets can be studied according to the thermal infrared wave spectrum characteristics. Reflection peak wavelength positions of uvarovite and spessartine are easy to distinguish with other types. However, that of almandine and pyrope, andradite and grossular have a large overlap and are difficult to distinguish with each other. Therefore, a fast and accurate classification method based on the thermal infrared spectrum is urgently needed. In this paper, the information about wavelength position and difference between wavelengths of the three reflection peaks of 85 different types of garnet samples were obtained from the thermal infrared spectroscopy library. Three nonlinear BP neural network methods, cluster analysis and multiple linear discrimination analysis were used to carry out garnet subclass recognition experiments, and the accuracy rate, recall rate and F1 value were used to evaluate the classification accuracy. The experimental results showed that the accuracy rate, recall rate and F1 value of BP neural network algorithm after classification could all reach 100%, and all types of garnets got a good distinction; the accuracy rate, recall rate and F1 value of clustering analysis and multivariate linear discriminant analysis were 86.1%, 80%, 79.2% and 84.2%, 80%, 79.5% separately, the four types of garnets with overlapping reflection peaks could not be well differentiated. According to the results, the nonlinear BP neural network is more suitable for the subclassification of garnets. Our study used powerful automatic nonlinear mapping ability of the BP neural network, has found the complex mapping relationship between the wavelength positions of the reflection peak in the thermal infrared spectrum of the garnets and the subclass types, and proved the feasibility and superiority of BP neural network method combined with thermal infrared spectrum characteristics. The identification of garnet subclass provided is fast and effective, and it can give good technical enlightenment for the rapid and effective identification of other minerals.
|
Received: 2020-06-09
Accepted: 2020-10-24
|
|
Corresponding Authors:
DAI Jing-jing
E-mail: daijingjing863@sina.com
|
|
[1] ZHENG Kun, MENG Bao-hang, YIN Xue-qin(郑 坤, 孟宝航, 银雪琴). Geological Review(地质评论), 2015, 61(Supp): 784.
[2] FAN Da-wei, LI Bo, CHEN Wei, et al(范大伟, 李 博, 陈 伟, 等). Chinese Journal of High Pressure Physics(高压物理学报), 2018, 32(1): 4.
[3] Smith C, Karunaratne S, Badenhorst P, et al. Remote Sensing, 2020, 12(6): 928.
[4] LIANG Shu-neng, GAN Fu-ping, YAN Bo-kun, et al(梁树能, 甘甫平, 闫柏琨, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2014, 34(7): 1763.
[5] JIN Jing, LI Zong-hao, ZHU Liang, et al(金 晶, 李宗昊, 朱 亮, 等). Journal of Railway Engineering Society(铁道工程学报), 2019, 36(3): 103.
[6] WANG Jian-yu, LI Chun-lai, JI Hong-zhen, et al(王建宇, 李春来, 姬弘桢, 等). Journal of Infrared and Millimeter Waves(红外与毫米波学报), 2015, 34(1): 52.
[7] ZHOU Zhi-hua(周志华). Machine Learning(机器学习). Beijing:Tsinghua University Press(北京:清华大学出版社), 2016.
[8] ZHANG Ju-xian, LIU Wei(张聚贤, 刘 伟). China Earthquake Engineering Journal(地震工程学报), 2019, 41(2): 406.
[9] LIU Ya-chong, TANG Zhi-ling(刘亚冲, 唐智灵). Computer Engineering(计算机工程), 2018, 44(2): 98.
[10] Gao K, Liu B, Yu X, et al. Remote Sensing, 2020, 12(6): 923. |
[1] |
GUO Ya-fei1, CAO Qiang1, YE Lei-lei1, ZHANG Cheng-yuan1, KOU Ren-bo1, WANG Jun-mei1, GUO Mei1, 2*. Double Index Sequence Analysis of FTIR and Anti-Inflammatory Spectrum Effect Relationship of Rheum Tanguticum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 188-196. |
[2] |
LI Hu1, ZHONG Yun1, 2, FENG Ya-ting1, LIN Zhen1, ZHU Shi-jiang1, 2*. Multi-Vegetation Index Soil Moisture Inversion Model Based on UAV
Remote Sensing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 207-214. |
[3] |
XU Rong1, AO Dong-mei2*, LI Man-tian1, 2, LIU Sai1, GUO Kun1, HU Ying2, YANG Chun-mei2, XU Chang-qing1. Study on Traditional Chinese Medicine of Lonicera L. Based on Infrared Spectroscopy and Cluster Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3518-3523. |
[4] |
JIA Hao1, 3, 4, ZHANG Wei-fang1, 3, LEI Jing-wei1, 3*, LI Ying-ying1, 3, YANG Chun-jing2, 3*, XIE Cai-xia1, 3, GONG Hai-yan1, 3, DING Xin-yu1, YAO Tian-yi1. Study on Infrared Fingerprint of the Classical Famous
Prescription Yiguanjian[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3202-3210. |
[5] |
ZHU Yan-ping1, CUI Chuan-jin1*, CHENG Peng-fei1, 2, PAN Jin-yan1, SU Hao1, 2, ZHANG Yi1. Measurement of Oil Pollutants by Three-Dimensional Fluorescence
Spectroscopy Combined With BP Neural Network and SWATLD[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2467-2475. |
[6] |
LUO Dong-jie, WANG Meng, ZHANG Xiao-shuan, XIAO Xin-qing*. Vis/NIR Based Spectral Sensing for SSC of Table Grapes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2146-2152. |
[7] |
ZHOU Qi1, 2, WANG Jian-jun1, 2*, HUO Zhong-yang1, 2*, LIU Chang1, 2, WANG Wei-ling1, 2, DING Lin3. UAV Multi-Spectral Remote Sensing Estimation of Wheat Canopy SPAD Value in Different Growth Periods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1912-1920. |
[8] |
ZHANG Fu1, 2, 3, CAO Wei-hua1, CUI Xia-hua1, WANG Xin-yue1, FU San-ling4*, ZHANG Ya-kun1. Non-Destructive Detection of Soluble Solids in Cherry Tomatoes by
Visible/Near Infrared Spectroscopy Based on SG-CARS-IBP[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 737-743. |
[9] |
LIU Si-qi1, FENG Guo-hong1*, TANG Jie2, REN Jia-qi1. Research on Identification of Wood Species by Mid-Infrared Spectroscopy Based on CA-SDP-DenseNet[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 814-822. |
[10] |
LI Chun-qiang1, 2, GAO Yong-gang1, 2, XU Han-qiu1, 2*. Cross Comparison Between Landsat New Land Surface Temperature
Product and the Corresponding MODIS Product[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 940-948. |
[11] |
FU Ming-hai1, 2, DAI Jing-jing1*, WANG Xian-guang3, HU Zheng-hua4, PENG Bo1, WAN Xin3, ZHANG Zhong-xue2, ZHAO Long-xian1, 2. A Study on the Thermal Infrared Spectroscopy Characteristics of the Skarn Minerals in Zhuxi Tungsten Deposit, Jiangxi Province[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 70-77. |
[12] |
ZHU Chen-guang1, LIU Ya-jun2, LI Xin-xing1, 3, GONG Wei-wei4*, GUO Wei1. Detection Method of Freshness of Penaeus Vannamei Based on
Hyperspectral[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 107-110. |
[13] |
CHEN Yong1, 2, GUO Yun-zhu1, WANG Wei3*, WU Xiao-hong1, 2*, JIA Hong-wen4, WU Bin4. Clustering Analysis of FTIR Spectra Using Fuzzy K-Harmonic-Kohonen Clustering Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 268-272. |
[14] |
SHANG Chao-nan1, XIE Yan-li2, GAO Xiao3, ZHOU Xue-qing2, ZHAO Zhen-dong2, MA Jia-xin1, CUI Peng3, WEI Xiao-xiao3, FENG Yu-hong1, 2*, ZHANG Ming-nan2*. Research on Qualitative and Quantitative Analysis of PE and EVA in Biodegradable Materials by FTIR[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(11): 3380-3386. |
[15] |
LIU Meng-xuan1, 2, 3, 4, WU Qiong5, WANG Xu-quan1, 2, 4, CHEN Qi5, ZHANG Yong-gang1, 2, HUANG Song-lei1, 2*, FANG Jia-xiong1, 2*. Validity and Redundancy of Spectral Data in the Detection Algorithm of Sucrose-Doped Content in Tea[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(11): 3647-3652. |
|
|
|
|