|
|
|
|
|
|
The Rapid Detection of La and Ce in Steel Materials by Portable EDXRF |
NI Zi-yue1, CHENG Da-wei2, LIU Ming-bo2, HAN Bing2, LI Xiao-jia1,2, CHEN Ji-wen3 |
1. Central Iron and Steel Research Institute, Beijing 100081, China
2. NCS Testing Technology Co., Ltd., Beijing 100094, China
3. College of Electrical and Control Engineering, North China University of Technology, Beijing 100144, China |
|
|
Abstract Rare earth elements, with their unique electronic structure and active chemical properties, are important additives in the metallurgical industry and play an important role in many fields. Not only can rare earth additives be used as deoxidizer and desulfurized to purify the molten steel, but also have metamorphism and alloying effects on the steel, which can improve the structure and performance of the steel materials. However, only with a certain range can the addition of rare earth elements in steel materials shows good properties. Although inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectrometry are usually used to detect rare earth elements in steel materials, which require sample digestion and tedious operations for a long test period. In this study, portable energy dispersive X-ray fluorescence spectrometry was used to realize the rapid detection of lanthanum and cerium in steel materials, and the whole weight of the instrument is less than 10 kg, which is convenient to test on-site. Compared with selecting L series lines for analysis and testing in the traditional portable instrument, a high-power X-ray tube is used to excite the K series spectral lines for rare earth elements, which can increase the intensity of analyzed peaks and avoid overlap interference of other common components in steel materials. The intensity and peak-to-background ratio were studied at different X-ray tube current and voltage when the measured time was set at 120s, and finally, the optimized parameters were chosen as 800 μA and 65 kV for irradiating samples. The calibration curves were drawn with reference materials, and the linear correlation coefficients of lanthanum and cerium were 0.999 2 and 0.998 8 respectively, after the correction of matrix effect by the intensity of the background. Reference samples of GBW01135 were chosen to calculate the detection limit and quantitation limit because both the content of La and Ce were of low content. Moreover,the detection limit of La and Ce was 0.001 1% and 0.000 5% respectively, and the quantitation limit was 0.003 8% and 0.001 6%, which satisfied the requirement of the actual test. The stability of the test was studied by 11 consecutive measurements for the sample of GBW01132a, and the relative standard deviation was 2.42% and 2.00% for La and Ce. Furthermore,the accuracy of the test results was also studied by testing multiple samples and comparing with reference values. The results showed that the relative error of the results were less than 20% except for one sample which was below the detection limit, and the relative error of more than 70% samples were less than 10%. The energy dispersive X-ray fluorescence spectrometry can realize the rapid detection of rare earth elements in steel materials, and the samples can be directly tested with simply polishing pretreatment, which is of certain significance for further research on the properties of steel materials.
|
Received: 2019-09-05
Accepted: 2020-01-19
|
|
|
[1] Massari Stefania, Ruberti Marcello. Resources Policy, 2013, 38(1): 36.
[2] Zhu Jian, Huang Haiyou, Xie Jianxin. Journal of Iron and Steel Research, 2017, 29(7): 513.
[3] Song Shenhua, Xu Yewei, Chen Xianmiao, et al. Journal of Rare Earths, 2016, 34(10): 1062.
[4] Zhang J B, Tong L B, Xu C, et al. Materials Science & Engineering A, 2017, 708: 11.
[5] Du Yuzhou, Zheng Mingyi, Qiao Xiaoguang, et al. Materials Science & Engineering A, 2016, 673: 47.
[6] Wei Chunyan, Ding Meiying. Chinese Rare Earths, 2004, 25(5): 24.
[7] Farinas J C, Rucandio I, Pomares-Alfonso M S, et al. Talanta, 2016, 154: 53.
[8] Tian Lunfu, Zou Deshuang, Dai Yichun, et al. Spectrochimica Acta Part B, 2015, 110: 136.
[9] Kunimura Shinsuke, Kawai Jun. X-Ray Spectrometry, 2013, 42(3): 171.
[10] Wrobel P M, Bala S, Czyzycki M, et al. Talanta, 2017, 162: 654.
[11] Krishna A Keshav, Khanna Tarun C., Mohan K Rama. Spectrochimica Acta Part B, 2016, 122: 156.
[12] Cherkashina T Y, Shtel’Makh S I, Pashkova G V. Applied Radiation and Isotopes, 2017, 130: 153.
[13] Fan Shouzhong, Zhang Qin, Li Guohui, et al. Metallurgical Analysis, 2006, 26(6): 27.
[14] YUAN Jing, SHEN Jia-lin, LIU Jian-kun, et al. Spectroscopy and Spectral Analysis, 2018, 38(2): 582.
[15] Zinin D S, Bushuev N N, Kuznetsov V V. Journal of Analytical Chemistry, 2017, 72(3): 279. |
[1] |
LIN Hong-jian1, ZHAI Juan1*, LAI Wan-chang1, ZENG Chen-hao1, 2, ZHAO Zi-qi1, SHI Jie1, ZHOU Jin-ge1. Determination of Mn, Co, Ni in Ternary Cathode Materials With
Homologous Correction EDXRF Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3436-3444. |
[2] |
XU Wei-xuan1, CHEN Wen-bin2, 3*. Determination of Barium in Purple Clay Products for Food Contact by
Energy Dispersive X-Ray Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 475-483. |
[3] |
LIU Ming-bo1, 2, ZHAO Lei1, 2, HU Xue-qiang2, NI Zi-yue1, 2, YANG Li-xia1, 2,JIA Yun-hai1, 2, WANG Hai-zhou1, 2*. Design of High-Throughput μ-EDXRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(09): 2752-2756. |
[4] |
NI Zi-yue1, CHENG Da-wei2, LIU Ming-bo2, YUE Yuan-bo2, HU Xue-qiang2, CHEN Yu2, LI Xiao-jia1, 2*. The Detection of Mercury in Solutions After Thermal Desorption-
Enrichment by Energy Dispersive X-Ray Fluorescence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1117-1121. |
[5] |
SHI Ruo-yu1, WEN Rui1*, GAO Xiang2, WANG Wen-xuan1, BAO Li-ge3, ZHAO Xue-feng4, LI Zi-xuan1, CAO Kun1, XIAO Wei1, LI Yu-long1. X-Ray Fluorescence Spectroscopy Combined With SEM-EDS Analysis to Glaze Composition of Glazed Tiles in Yuan Dynasty[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3808-3814. |
[6] |
WANG Yi1, 2, LI Chang-rong1, 2*, ZHUANG Chang-ling1, 2. Study on Alumina/Lanthanum Oxide X-Ray Diffraction and Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2480-2483. |
[7] |
WANG Yi1, 2, LI Chang-rong1, 2*, ZENG Ze-yun1, 2,XI Zuo-bing1, 2, ZHUANG Chang-ling1, 2. Study on Alumina/Cerium Oxide X-Ray Diffraction and Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(06): 1841-1845. |
[8] |
NI Zi-yue1, CHENG Da-wei2, LIU Ming-bo2, HU Xue-qiang2, LIAO Xue-liang2, YUE Yuan-bo2, LI Xiao-jia1,2, CHEN Ji-wen3. The Rapid Detection of Trace Mercury in Soil With EDXRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(03): 734-738. |
[9] |
LI Qing-bo1, BI Zhi-qi1, SHI Dong-dong2. The Method of Fishmeal Origin Tracing Based on EDXRF Spectrometry Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(03): 745-749. |
[10] |
CAI Shun-yan1, 2, ZHOU Jian-bin1*, TUO Xian-guo1, YU Jie1. Optimized Filter Selection for Measuring Copper and Molybdenum Contents by EDXRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(06): 1934-1939. |
[11] |
MA Hong-yan,WANG Jing-yuan, ZHANG Yue-cheng*, YANG Xiao-jun, CHEN Xiao-li. Determination of Dopamine by Fluorescence Quenching-Recovery Method with Peanut Carbon Quantum Dots as Probe[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(04): 1093-1098. |
[12] |
CHEN Ji-wen1,2, NI Zi-yue1, CHENG Da-wei2, LIU Ming-bo2, LIAO Xue-liang2, YANG Bo-zan2, YUE Yuan-bo2, HAN Bing2, LI Xiao-jia1,2. The Rapid Detection of Cadmium in Soil Based on Energy Dispersive X-Ray Flourescence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(08): 2600-2605. |
[13] |
ZHANG Li-jiao1,2, LAI Wan-chang1, XIE Bo2, 3, HUANG Jin-chu1, LI Dan1, WANG Guang-xi1, YANG Qiang1, CHEN Xiao-li1. The Effect of Filterson on the Determination of Trace Heavy Metal Cd in Light Matrix by Energy Dispersive X-Ray Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1917-1921. |
[14] |
ZHANG Mao-lin1, WANG Li-hua2*, LI Qi-jiang1, WU Jun-ming1. EDXRF and XAFS Analysis on the White Porcelains of Ding Kiln of Successive Dynasties[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(05): 1540-1545. |
[15] |
CHENG Feng1, 2, GU Yi1, 2*, GE Liang-quan1, 2, ZHAO Jian-kun1, LI Meng-ting1, ZHANG Ning1 . The Research on Matrix Effect and Correction Technology of Rock Sample in In-Situ Energy Dispersive X-Ray Fluorescence Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(03): 919-923. |
|
|
|
|