|
|
|
|
|
|
Remote Sensing Monitoring of Nitrogen Nutrient Index in Winter Wheat by Integrating Hyperspectral and Digital Imagery |
YANG Fu-qin1, LI Chang-hao1, ZHANG Ying-fa1, CHEN Ri-qiang2, LIU Yang2, GUO Liang-dong3, FENG Hai-kuan2, 4* |
1. College of Civil Engineering, Henan University of Engineering, Zhengzhou 451191, China
2. Key Laboratory of Quantitative Remote Sensing in Agriculture of Ministry of Agriculture and Rural Affairs, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
3. Zhengzhou Shangpai Lanlian Network Technology Corporation, Zhengzhou 450000, China
4. National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China
|
|
|
Abstract Rapid, real-time, and accurate acquisition of the nitrogen nutrition status of winter wheat is crucial for evaluating winter wheat growth, estimating yield, and guiding agricultural modernization and production. This study utilized hyperspectral cameras and digital cameras mounted on drones to collect canopy spectral data during the three critical growth periods. Simultaneous ground experiments were conducted to determine the physical and chemical properties of biomass and plant nitrogen content. Four characteristic parameters, including the vegetation index, the red edge index, the red edge parameter, and the three-band parameter of the hyperspectral image, as well as the color index of the digital camera and its fusion parameters, were selected. Partial Least Squares Regression (PLSR), Stepwise Regression (SWR), Random Forest (RF), and Back Propagation (BP) algorithms were used to establish a winter wheat nitrogen nutrition index monitoring model. The accuracy of the model was evaluated, and the optimal estimation model was selected. The results showed that (1) In univariate modeling, the nitrogen nutrition index model constructed with the red-edge parameter DIDRmid was the best, achieving a modeling R2 of 0.66, RMSE of 0.11%, and a validation R2 of 0.55, RMSE of 0.13%. (2) In the multivariate modeling, the nitrogen nutrient index model constructed with the red edge parameter as the independent variable was superior to the nitrogen nutrient index model constructed with the vegetation index, the red edge index, the three-band parameter and the color index as the independent variables, where the nitrogen nutrition index model constructed by the BP algorithm based on red edge parameters was optimal (modeling R2=0.75, RMSE=0.10%, validation R2=0.60, RMSE=0.12%).(3) In fusing hyperspectral parameters and digital index variable modelling, the nitrogen nutrient index model constructed with the multimodal variable red edge parameter + color index was superior to the nitrogen nutrient index models constructed with the red edge parameter + vegetation index, red edge parameter + red edge index and red edge parameter + triple band parameter, where the nitrogen nutrient index model constructed using PLSR with the fusion of the red edge parameters and color index was optimal (modeling R2=0.77, RMSE=0.09%, validation R2=0.65, RMSE=0.11%). Its model accuracy was better than that of univariate modeling and multivariate modeling. This study can provide an important reference for estimating the nitrogen nutrition status of winter wheat.
|
Received: 2024-09-21
Accepted: 2024-12-19
|
|
Corresponding Authors:
FENG Hai-kuan
E-mail: fenghaikuan123@163.com
|
|
[1] YANG Fu-qin, DAI Hua-yang, FENG Hai-kuan, et al(杨福芹, 戴华阳, 冯海宽, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2016, 32(23): 161.
[2] Rodriguez I A, Lacasa J, van Versendaal E, et al. European Journal of Agronomy, 2024, 154: 127079.
[3] Cao Q, Miao Y, Feng G, et al. Computers and Electronics in Agriculture, 2015, 112: 54.
[4] WANG Yu-na, LI Fen-ling, WANG Wei-dong, et al(王玉娜, 李粉玲, 王伟东, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2020, 36(22): 31.
[5] Yue S, Meng Q, Zhao R, et al. Agronomy Journal, 2012, 104(2): 523.
[6] Jiang J, Atkinson P M, Zhang J, et al. European Journal of Agronomy, 2022, 138: 126537.
[7] Han L, Yang G J, Dai H Y, et al. Plant Methods, 2019, 15: 10.
[8] Qiu Z, Ma F, Li Z, et al. Computers and Electronics in Agriculture, 2021, 189: 106421.
[9] Justes E, Mary B, Meynard J M, et al. Annals of Botany, 1994, 74(4): 397.
[10] Lemaire G, Jeuffroy M H, Gastal F. European Journal of Agronomy, 2008, 28(4): 614.
[11] Li F, Mistele B, Hu Y C, et al. Agricultural and Forest Meteorology, 2013, 180: 44.
[12] Huang S, Miao Y, Zhao G, et al. Remote Sensing, 2015, 7(8): 10646.
[13] Buschmann C, Nagel E. International Journal of Remote Sensing, 1993, 14(4): 711.
[14] Li L, Ren T, Ma Y, et al. Computers and Electronics in Agriculture, 2016, 126: 21.
[15] Guyot G, Baret F, Major D J. International Society of Photogrammetry and Remote Sensing, 1988, 27(11): 750.
[16] Cao Q, Miao Y, Wang H, et al. Field Crops Research, 2013, 154: 133.
[17] Huete A, Didan K, Miura T, et al. Remote Sensing of Environment, 2002, 83(1-2): 195.
[18] Broge N H, Leblanc E. Remote Sensing of Environment, 2001, 76(2): 156.
[19] HE Cai-lian, ZHENG Shun-lin, WAN Nian-xin, et al(何彩莲, 郑顺林, 万年鑫, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2016, 36(9): 2930.
[20] Wang D, Li R, Liu T, et al. Field Crops Research, 2023, 304: 109175.
|
[1] |
YANG Fu-qin1, CHEN Ri-qiang2, LIU Yang2, CHEN Xin-xin1, XIAO Yi-bo1, LI Chang-hao1, WANG Ping3, FENG Hai-kuan2, 4*. Monitoring Potato Biomass and Plant Nitrogen Content With UAV-Based Hyperspectral Imaging[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(06): 1729-1738. |
[2] |
ZHANG Yi-ting1, 2, LU Dong-hua1, 2*, WU Ding1, 2, GAO Yan1, 2. Extraction of Impervious Surfaces in Towns Based on UAV Hyperspectral Imagery[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(04): 1150-1158. |
[3] |
GUO Li-xiao1, 2, CHEN Zhi-chao1*, MA Yan-peng1, 2, BIAN Ming-bo1, 2, FAN Yi-guang2, CHEN Ri-qiang2, LIU Yang2, FENG Hai-kuan2, 3*. Estimation of Potato LAI Using UAV Multispectral and Multiband
Combined Textures[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(12): 3443-3454. |
[4] |
WANG Yan-cang1, 4, 5, 6, ZHU Yu-chen3*, QI Yan-xin1, ZHANG Zhi-tong1, CAO Hui-qiong1, WANG Jin-gao2, GU Xiao-he4, TANG Rui-yin1, HE Yue-jun1, LI Xiao-fang2, LUO Wei1. Hyperspectral Estimation of Leaf Moisture Content in Winter Wheat After Discrete Wavelet Denoising[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(09): 2559-2567. |
[5] |
LIAN Bing-rui1, 2, LI Ya-hao1, 3, ZHANG Jing2, LI Chang-qing4, YANG Xiao-dong5*, WANG Ji-qing2, ZOU Guo-yuan1, Thompson Rodney6, YANG Jun-gang1*. Prediction of Total Nitrogen Content of Lettuce Based on UAV
Multi-Spectral Vegetation Index[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(08): 2318-2325. |
[6] |
QIAO Zhi1, JIANG Qun-ou1, 2*, LÜ Ke-xin1, GAO Feng1. Retrieval Model for Water Quality Parameters of Miyun Reservoir Based on UAV Hyperspectral Remote Sensing Data and Deep Neural Network
Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(07): 2066-2074. |
[7] |
LIU Zi-yang1, 2, FENG Shuai1, 2, ZHAO Dong-xue1, 2, LI Jin-peng1, 2, GUAN Qiang1, 2, XU Tong-yu1, 2*. Research on Spectral Feature Extraction and Detection Method of Rice Leaf Blast by UAV Hyperspectral Remote Sensing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(05): 1457-1463. |
[8] |
ZHANG Yong1, 2, 3, XU Han-lie1, 2, ZHANG Li-jun1, 2, LI Yuan1, 2, SUN Ling1, 2, QIN Dan-yu1, 2, RONG Zhi-guo1, 2, HU Xiu-qing1, 2, LU Qi-feng4, LU Nai-meng1, 2. Measurements of CRCS Dunhuang Gobi Surface Reflectance Spectrum
Using Multi-Rotor UAV and Its Calibration Evaluations[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(05): 1439-1448. |
[9] |
LI Hui1, LIU Xu-sheng2, JIANG Jin-bao3*, CHEN Xu-hui4, ZHANG Shuai5, TANG Ke1, ZHAO Xin-wei1, DU Xing-qiang1, YU LONG Fei-xue1. Extraction of Natural Gas Microleakage Stress Regions Based on Hyperspectral Images of Winter Wheat[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(03): 770-776. |
[10] |
XIAO Bin1, 2, HE Hong-chang1, DOU Shi-qing1*, FAN Dong-lin1, FU Bo-lin1, ZHANG Jie1, XIONG Yuan-kang1, SHI Jin-ke1. A Fine Classification Method of Citrus Fruit Trees Based on UAV
Hyperspectral Images and SULOV_XGBoost Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(02): 548-557. |
[11] |
ZHU Wen-jing1, 2,FENG Zhan-kang1, 2,DAI Shi-yuan1, 2,ZHANG Ping-ping3,JI Wen4,WANG Ai-chen1, 2,WEI Xin-hua1, 2*. Multi-Feature Fusion Detection of Wheat Lodging Information Based on UAV Multispectral Images[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 197-206. |
[12] |
SHEN Si-cong, ZHANG Jing-xue, CHEN Ming-hui, LI Zhi-wei, SUN Sheng-nan, YAN Xue-bing*. Estimation of Above-Ground Biomass and Chlorophyll Content of
Different Alfalfa Varieties Based on UAV Multi-Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3847-3852. |
[13] |
ZHU Zhi-cheng1, WU Yong-feng2*, MA Jun-cheng2, JI Lin2, LIU Bin-hui3*, JIN Hai-liang1*. Response of Winter Wheat Canopy Spectra to Chlorophyll Changes Under Water Stress Based on Unmanned Aerial Vehicle Remote Sensing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3524-3534. |
[14] |
SUN Lin1, BI Wei-hong1, LIU Tong1, WU Jia-qing1, ZHANG Bao-jun1, FU Guang-wei1, JIN Wa1, WANG Bing2, FU Xing-hu1*. Identification Algorithm of Green Algae Using Airborne Hyperspectral and Machine Learning Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3637-3643. |
[15] |
FENG Hai-kuan1, 2, FAN Yi-guang1, TAO Hui-lin1, YANG Fu-qin3, YANG Gui-jun1, ZHAO Chun-jiang1, 2*. Monitoring of Nitrogen Content in Winter Wheat Based on UAV
Hyperspectral Imagery[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3239-3246. |
|
|
|
|