|
|
|
|
|
|
In-Situ SERS Monitoring of SPR-Catalyzed Coupling Reaction of
p-Nitroiodobenzene on Noble Metal Nanoparticles |
WEI Yu-lan, ZHANG Chen-jie, YUAN Ya-xian*, YAO Jian-lin* |
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
|
|
|
Abstract Surface-enhanced Raman spectroscopy (SERS) derived from surface plasmon resonance (SPR) has become an effective tool for surface analysis because of its high sensitivity and surface specificity. Moreover, SPR can induce and stimulate the catalytic reaction on the surface of noble metal nanostructures. The combination of SERS and SPR is beneficial to in-situ monitoring of SPR catalytic reaction at the surface interface of noble metals. This paper used p-nitroiodobenzene (PNIB) as a probe molecule to demonstrate SERS's capability in characterizing catalytic coupling reactions. The effects of laser power, wavelength, and substrate on the catalytic coupling were investigated, and the mechanism of the coupling reaction was proposed preliminary. The results revealed that azo compound 1,2-bis(4-iodophenyl)diazene was produced by SPR-catalyzed coupling reaction of PNIB on the surface of gold nanoparticle monolayer film (Au MLF). The equilibrium of the reaction was reached with short duration by increasing laser power, i.e., from 200 s at 3 mW to about 50 s at 15 mW. The coupling efficiency was increased to about doubled. On the Au@Ag nanoparticle film, the coupling efficiency is increased by about 10 times, and the coupling efficiency is significantly dependent on the excitation wavelength and SERS substrates. The reaction activity order of different substrate surfaces is Au@Ag (532 nm) > Au@Ag (638 nm) > Au (638 nm). It demonstrated that the hole-trapping agent sodium sulfite increase the coupling efficiency of the reaction by about an order of magnitude. It indicated that the reaction of PNIB coupling to 1,2-bis(4-iodophenyl) diazene catalyzed by SPR is a reduction reaction induced by hot electrons.
|
Received: 2023-08-08
Accepted: 2024-05-15
|
|
Corresponding Authors:
YUAN Ya-xian, YAO Jian-lin
E-mail: jlyao@suda.edu.cn;yuanyaxian@suda.edu.cn
|
|
[1] Singh J, Lamberti C, van Bokhoven J A. Chem. Soc. Rev.,2010, 39(12):4754.
[2] Hartman T, Wondergem C S, Kumar N, et al. J. Phys. Chem. Lett.,2016, 7(8):1570.
[3] Vimont A, Thibault-Starzyk F, Daturi M. Chem. Soc. Rev.,2010, 39(12):4928.
[4] Le Ru E C, Etchegoin P. G. Annu. Rev. Anal. Chem., 2012, 63: 65.
[5] Schlucker S. Angew. Chem. Int. Ed.,2014, 53(19):4756.
[6] Zhan C, Chen X J, Huang Y F, et al. Acc. Chem. Res.,2019, 52(10):2784.
[7] Zhang M, Zhao L B, Luo W L, et al. J. Phys. Chem. C,2016, 120(22):11956.
[8] Dong J C, Zhang X G, Briega-Martos V, et al. Nat. Energy, 2019, 4(1): 60.
[9] Peiris S, McMurtrie J, Zhu H Y. Catal. Sci. Technol., 2016, 6(2): 320.
[10] Zhu Y, Guan M, Wang J, et al. Appl. Mater. Today, 2021, 24: 101125.
[11] Li J F, Zhang Y J, Ding S Y, et al. Chem. Rev.,2017, 117(7):5002.
[12] Huang Y F, Zhu H P, Liu G K, et al. J. Am. Chem. Soc., 2010, 132(27): 9244.
[13] Kang L, Han X, Chu J, et al. ChemCatChem,2015, 7(6):1004.
[14] Grirrane A, Corma A, Garcia H. Nat. Protoc., 2010, 5(3): 429.
[15] Zhang C, Jiao N. Angew. Chem. Int. Ed., 2010, 49(35): 6174.
[16] Liu X, Li H Q, Ye S, et al. Angew. Chem. Int. Ed., 2014, 53(29): 7624.
[17] Frens G. Nat. Phys. Sci., 1973, 241(105): 20.
[18] Fang P P, Li J F, Yang Z L, et al. J. Raman Spectrosc., 2008, 39(11): 1679.
[19] Zhang Y R, Xu Y Z, Xia Y, et al. J. Colloid Interf. Sci., 2011, 359(2): 536.
[20] Green J H S, Harrison D J. Spectrochim. Acta Part A,1970, 26(9):1925.
[21] Zhu H, Ke X, Yang X, et al. Angew. Chem. Int. Ed., 2010, 49(50): 9657.
[22] Xu L J, Zong C, Zheng X S, et al. Anal. Chem., 2014, 86(4): 2238.
[23] Xu P, Kang L, Mack N H, et al. Sci. Rep., 2013, 3(1): 2997.
[24] Liu X, Tang L, Niessner R, et al. Anal. Chem., 2015, 87(1): 499.
[25] Huang S C, Wang X, Zhao Q Q, et al. Nat. Commun., 2020, 11(1): 4211.
|
[1] |
ZHAO Jing-rui1, WANG Ya-min1, YUAN Yu-xun1, YU Jing1, ZHAO Ming-hui1, DONG Juan1, 3, SUN Jing-tao1, 2, 3, 4*. Study on SERS Detection of Ethyl Carbamate in Grape Spirit[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(09): 2467-2475. |
[2] |
LI Chang-ming1, GU Yi-fan2, ZHANG Hong-chen1, SONG Shao-zhong3*, GAO Xun2*. The Surface Enhanced Raman Spectroscopy Characteristics of Cyromazine Molecule Based on Density Function Theory[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(06): 1566-1570. |
[3] |
SI Min-zhen1, 2, WANG Min1, 2, LI Lun1, 2, YANG Yong-an1, 2, ZHONG Jia-ju3, YU Cheng-min3*. The Main Ingredients Analysis and Rapid Identification of Boletuses Based on Surface-Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(06): 1648-1654. |
[4] |
HUANG Li-jun1, ZHUANG Shun-qian2, FENG Yong-wei1, YANG Fang-wei2, SUN Zhen1, XIE Yun-fei2*, XUE Qing-hai1. Simultaneous Determination of Five Banned Sartan Compounds in Antihypertensive Health Food Using Thin-Layer Chromatography Combined With Surface-Enhanced Raman Spectroscopy (TLC-SERS)[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(05): 1354-1363. |
[5] |
XING Hai-bo1, ZHENG Bo-wen1, LI Xin-yue1, HUANG Bo-tao2, XIANG Xiao2, HU Xiao-jun1*. Colorimetric and SERS Dual-Channel Sensing Detection of Pyrene in
Water[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 95-102. |
[6] |
LU Wen-jing, FANG Ya-ping, LIN Tai-feng, WANG Hui-qin, ZHENG Da-wei, ZHANG Ping*. Rapid Identification of the Raman Phenotypes of Breast Cancer Cell
Derived Exosomes and the Relationship With Maternal Cells[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3840-3846. |
[7] |
GUO He-yuanxi1, LI Li-jun1*, FENG Jun1, 2*, LIN Xin1, LI Rui1. A SERS-Aptsensor for Detection of Chloramphenicol Based on DNA Hybridization Indicator and Silver Nanorod Array Chip[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3445-3451. |
[8] |
LI Wen-wen1, 2, LONG Chang-jiang1, 2, 4*, LI Shan-jun1, 2, 3, 4, CHEN Hong1, 2, 4. Detection of Mixed Pesticide Residues of Prochloraz and Imazalil in
Citrus Epidermis by Surface Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3052-3058. |
[9] |
ZHAO Ling-yi1, 2, YANG Xi3, WEI Yi4, YANG Rui-qin1, 2*, ZHAO Qian4, ZHANG Hong-wen4, CAI Wei-ping4. SERS Detection and Efficient Identification of Heroin and Its Metabolites Based on Au/SiO2 Composite Nanosphere Array[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3150-3157. |
[10] |
SU Xin-yue1, MA Yan-li2, ZHAI Chen3, LI Yan-lei4, MA Qian-yun1, SUN Jian-feng1, WANG Wen-xiu1*. Research Progress of Surface Enhanced Raman Spectroscopy in Quality and Safety Detection of Liquid Food[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2657-2666. |
[11] |
ZHAO Yu-wen1, ZHANG Ze-shuai1, ZHU Xiao-ying1, WANG Hai-xia1, 2*, LI Zheng1, 2, LU Hong-wei3, XI Meng3. Application Strategies of Surface-Enhanced Raman Spectroscopy in Simultaneous Detection of Multiple Pathogens[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2012-2018. |
[12] |
CHENG Chang-hong1, XUE Chang-guo1*, XIA De-bin2, TENG Yan-hua1, XIE A-tian1. Preparation of Organic Semiconductor-Silver Nanoparticles Composite Substrate and Its Application in Surface Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2158-2165. |
[13] |
LI Chun-ying1, WANG Hong-yi1, LI Yong-chun1, LI Jing1, CHEN Gao-le2, FAN Yu-xia2*. Application Progress of Surface-Enhanced Raman Spectroscopy for
Detection Veterinary Drug Residues in Animal-Derived Food[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1667-1675. |
[14] |
XIE Huan-ran, CUI Hao, YAN Dong, LI Hui, LIANG Zuo-qin*, WANG Xiao-mei, YE Chang-qing. Synthesis and Piezofluorochromic Properties of a 2-Substituted
Triphenylamine-Anthracene Derivative[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1776-1780. |
[15] |
HUANG Xiao-wei1, ZHANG Ning1, LI Zhi-hua1, SHI Ji-yong1, SUN Yue1, ZHANG Xin-ai1, ZOU Xiao-bo1, 2*. Detection of Carbendazim Residue in Apple Using Surface-Enhanced Raman Scattering Labeling Immunoassay[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1478-1484. |
|
|
|
|