光谱学与光谱分析 |
|
|
|
|
|
An Ultraviolet Spectroscopy Method for Rapid Partial Discharge Detection in GIS |
DAI Dang-dang1, WANG Xian-pei1, HU Hong-hong2, ZHAO Yu1, LONG Jia-chuan1, ZHU Guo-wei1, TIAN Meng1, HUANG Yun-guang3 |
1. School of Electronic Information, Wuhan University, Wuhan 430072, China 2. Shenzhen Power Supply Bureau Company, Limited, Shenzhen 518001, China 3. Guangxi Grid Electric Power Research Institute, Nanning 530015, China |
|
|
Abstract By detecting the stable by-products of SF6 through ultraviolet spectroscopy, the present paper achieved the rapid detection of the GIS partial discharge fault. First derivative and the S-G filter were used for the spectral denoising and smoothing. The discharge experiment was used for validating feature selection. Principal component regression was used for the analysis of the concentration of SO2. The concentration of SO2 was used for fuzzy judge. By selecting the appropriate wavelength range (295~305 nm), ultraviolet spectrum can identify SO2 from the complex by-products of SF6. In this paper, firstly, the author reviewed the decomposition mechanism of SF6 under partial discharge, and then verified the rationality of detecting partial discharge by UV, and ultimately achieved the rapid detection of GIS partial discharge and fuzzy judgment of discharge time.
|
Received: 2014-01-16
Accepted: 2014-04-16
|
|
Corresponding Authors:
DAI Dang-dang
E-mail: daidangdang@whu.edu.cn
|
|
[1] TANG Ju, LI Tao, WAN Ling-yun(唐 炬,李 涛,万凌云). High Voltage Engineering(高电压技术), 2008, 34(8): 1583. [2] ZHANG Xiao-xing, YAO Yao, TANG Ju(张晓星,姚 尧,唐 炬). High Voltage Engineering(高电压技术), 2008, 34(4): 664. [3] Intenational Electrotechnical Commission. IEC60270 High-Voltage Test Techniques-Partial Discharge Measurement, 2000. [4] Zhao Z Q, MacAlpine M, Demokan M S. Lightwave Techn., 2000, 18(6): 795. [5] Huecker T, Gorablenkow J. IEEE Trans. Power Delivery, 1998, 13(4): 1162. [6] Xie Y B, Tang J, Zhang X X. Euro. Trans. Electr. Power, 2010, 20(6): 811. [7] Ding W, Hayashi R, Ochi K. J. Suehiro. IEEE Trans. Dielectr. Electr. Insulation, 2006, 13(6): 1200. [8] Beyer C, Jenett H, Kfockow D. IEEE Trans. on Dielectrics and Electrical Insulation, 2000, 7(2): 234. [9] Tang Ju, Liu Fan, Meng Qinghong. IEEE Trans. Dielectr. Electrical Insulation, 2012, 19(1): 37. [10] ZHANG Xiao-xing, REN Jiang-bo, TANG Ju(张晓星,任江波,唐 炬). High Voltage Engineering(高电压技术), 2009, 35(12): 2970. [11] WU Zhen, YU Qi-lian, ZHANG Fan(吴 桢,虞启琏,张 帆). Chinese Journal of Scientific Instrument(仪器仪表学报), 2004, 25(4): 470. [12] ZOU Yun-yun, CAI Xiao-shu, ZHAO Qin(邹芸芸,蔡小舒,赵 琴). Institute of Particle and Two-Phase Flow Measurement(环境工程), 2009, 27(1): 89. [13] Pradayrol C, Casanovas A M, Deharo I, et al. Phys. Ⅲ, 1996, 6(5): 603. [14] Beyer C, Jenett H, Klockow D. IEEE Trans. on Dielectrics and Electrical Insulation, 2000, 7(2): 234. [15] Tang Ju, Liu Fan, Zhang Xiaoxing, et al. IEEE Trans. Plasma Science, 2012, 40(1): 56. [16] SHI Yue-hua, LU Yong, XU Guang-ming(史月华,陆 勇,徐光明). Chinese Journal of Analytical Chemistry(分析化学), 2001, 29(1): 87. [17] TANG Ju, CHEN Chang-jie, LIU Fan(唐 炬,陈长杰,刘 帆). Power System Technology(电网技术), 2011, 35(1): 110. [18] CUI Tao, ZHAO Li(崔 涛, 赵 莉). Process Automation Instrumentation(自动化仪表), 2002, 23(7): 3. |
[1] |
LU Wen-jing, FANG Ya-ping, LIN Tai-feng, WANG Hui-qin, ZHENG Da-wei, ZHANG Ping*. Rapid Identification of the Raman Phenotypes of Breast Cancer Cell
Derived Exosomes and the Relationship With Maternal Cells[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3840-3846. |
[2] |
GUO Ge1, 3, 4, ZHANG Meng-ling3, 4, GONG Zhi-jie3, 4, ZHANG Shi-zhuang3, 4, WANG Xiao-yu2, 5, 6*, ZHOU Zhong-hua1*, YANG Yu2, 5, 6, XIE Guang-hui3, 4. Construction of Biomass Ash Content Model Based on Near-Infrared
Spectroscopy and Complex Sample Set Partitioning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3143-3149. |
[3] |
CHENG Fang-beibei1, 2, GAN Ting-ting1, 3*, ZHAO Nan-jing1, 4*, YIN Gao-fang1, WANG Ying1, 3, FAN Meng-xi4. Rapid Detection of Heavy Metal Lead in Water Based on Enrichment by Chlorella Pyrenoidosa Combined With X-Ray Fluorescence Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2500-2506. |
[4] |
LI Bin, SU Cheng-tao, YIN Hai, LIU Yan-de*. Hyperspectral Imaging Technology Combined With Machine Learning for Detection of Moldy Rice[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2391-2396. |
[5] |
ZHANG Jing, GUO Zhen, WANG Si-hua, YUE Ming-hui, ZHANG Shan-shan, PENG Hui-hui, YIN Xiang, DU Juan*, MA Cheng-ye*. Comparison of Methods for Water Content in Rice by Portable Near-Infrared and Visible Light Spectrometers[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2059-2066. |
[6] |
HUANG Xiao-wei1, ZHANG Ning1, LI Zhi-hua1, SHI Ji-yong1, SUN Yue1, ZHANG Xin-ai1, ZOU Xiao-bo1, 2*. Detection of Carbendazim Residue in Apple Using Surface-Enhanced Raman Scattering Labeling Immunoassay[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1478-1484. |
[7] |
SHI Zhi-feng1, 2, LIU Jia2, XIAO Juan2, ZHENG Zhi-wen1*. Investigation of Novel Method for Detecting Vanillin Based on X-Ray Diffraction Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1563-1568. |
[8] |
WANG Yi-tao1, WU Cheng-zhao1, HU Dong1, SUN Tong1, 2*. Research Progress of Plasticizer Detection Based on Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1298-1305. |
[9] |
DONG Xin-xin, YANG Fang-wei, YU Hang, YAO Wei-rong, XIE Yun-fei*. Study on Rapid Nondestructive Detection of Pork Lean Freshness Based on Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 484-488. |
[10] |
LIU Feng-xiang, HE Shuai, ZHANG Li-hao, HUANG Xia, SONG Yi-zhi*. Application of Raman Spectroscopy in Detection of Pathogenic Microorganisms[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3653-3658. |
[11] |
ZHANG Xue-fei1, DUAN Ning1, 2*, JIANG Lin-hua1, 2*, CHENG Wen2, YU Zhao-sheng3, LI Wei-dong2, ZHU Guang-bin4, XU Yan-li2. Study on Stability and Sensitivity of Deep Ultraviolet Spectrophotometry Detection System[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3802-3810. |
[12] |
CHEN Yu-nan1, 2, 3, YANG Rui-fang1, 3*, ZHAO Nan-jing1, 3*, ZHU Wei1, 2, 3, CHEN Xiao-wei1, 2, 3, ZHANG Rui-qi1, 2, 3. Research on Measuring Oil Film Thickness Based on Laser-Induced Water Raman Suppression Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3954-3962. |
[13] |
YAN Kang-ting1, 2, HAN Yi-fang1, 2, WANG Lin-lin1, 2, DING Fan3, LAN Yu-bin1, 2*, ZHANG Ya-li2, 3*. Research on the Fluorescence Spectra Characteristics of Abamectin Technical and Preparation Solution[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(11): 3476-3481. |
[14] |
ZHANG Qian, DONG Xiang-hui, YAO Wei-rong, YU Hang, XIE Yun-fei*. Surface-Enhanced Raman Spectroscopy for Rapid Detection of Flunixin Meglumine Residues in Pork[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3155-3160. |
[15] |
HU Yu-xia1, CHEN Jie1, SHAO Hui1, YAN Pu1, XU Heng1, SUN Long1, XIAO Xiao1, XIU Lei3, FENG Chun2GAN Ting-ting2, ZHAO Nan-jing2*. Research Progress of Spectroscopy Detection Technologies for Waterborne Pathogens[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(09): 2672-2678. |
|
|
|
|