|
|
|
|
|
|
Application of Raman Spectroscopy in Detection of Pathogenic Microorganisms |
LIU Feng-xiang, HE Shuai, ZHANG Li-hao, HUANG Xia, SONG Yi-zhi* |
Bio-Medical Diagnostics Department, Suzhou Institute of Biobedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
|
|
|
Abstract Pathogenic microorganisms refer to microorganisms that can invade the human body and cause infections. Clinically, diseases caused by pathogenic microorganisms infection are extremely common. The traditional diagnosis of clinical pathogenic bacteria mainly relies on bacterial culture, but this method takes a long time and often takes 2-5 days to get the results, and there are some problems that the culture of bacteria is difficult or even impossible. Doctors who are unable to identify bacterial species and drug sensitivity use broad-spectrum antibiotics based on their experience to accelerate the emergence of bacterial resistance. Therefore, highly sensitive detection and identification of pathogenic microorganisms have become an important research direction of scholars at home and abroad. Raman spectroscopy is a kind of treatment of samples in situ, non-invasive, no mark detection technology, can be in the single cell level and provides different microbial cells biological molecular fingerprint information. Through this information, can determine the kinds of microorganisms, physical characteristics and mutation phenotype, achieve rapid detection of microbial samples. With the rapid development of laser spectroscopy and the continuous increase in clinical demand, sub-techniques with Raman spectroscopy detection technology as the core was born (such as surface-enhanced Raman spectroscopy, Fourier transform Raman spectroscopy, laser resonance Raman spectroscopy, confocal Raman microscopy, coherent anti-Stokes Raman spectroscopy, stimulated Raman spectroscopy and other related technologies), while improving the weak signal strength of the previous Raman spectroscopy technology to achieve High-precision rapid detection and analysis of microorganisms. Relying on its advantages of no restriction on the state of samples and the ability to detect small changes in the composition of substances, the research on Raman spectroscopy in the field of pathogenic microorganisms has been increasing in recent years. In this paper, the research status of microbial detection has carried on the investigation and analysis around the principle of Raman spectroscopy technology for its application in microbiological detection has carried on the detailed elaboration, mainly in pathogenic microorganisms identification with the technology and discusses the research progress in drug susceptibility testing, and with the traditional testing technology and advantages were analyzed. The differences between It provides a new method for rapid detection of pathogenic microorganisms.
|
Received: 2021-06-02
Accepted: 2021-10-11
|
|
Corresponding Authors:
SONG Yi-zhi
E-mail: songyz@sibet.ac.cn
|
|
[1] ZHANG Wen-mei(张文梅). Psychology Monthly(心理月刊), 2019, 14(17): 18.
[2] LI Wei-bin, GUO Chen-hong, WANG Yu-jiong(李维彬, 郭辰虹, 王玉炯). Biotechnology Bulletin(生物技术通报), 2006,(2): 67.
[3] YANG Kai, LI Hong-zhe, ZHU Yong-guan, et al(杨 凯, 李弘哲, 朱永官,等). The Journal of Light Scattering(光散射学报), 2019, 31(4): 336.
[4] Eili Y Klein, Thomas P Van Boeckel, Elena M Martinez, et al. Proceedings of the National Academy of Sciences of USA. 2018, 115(15):E3463.
[5] Mullard A, O’Neill J. Nat. Rev. Drug. Discov.,2016,15:526.
[6] ZHANG Ping, CHU Dong-chen, CHEN Ke-ren, et al(张 萍, 褚东辰, 陈可仁,等). Journal of Beijing University of Technology(北京工业大学学报), 2020, 46(12): 1417.
[7] LIU Xiao-ying(刘晓莹). Master Dissertation(硕士论文). Beijing University of Technology(北京工业大学), 2018.
[8] GUO Zhen-dong, ZHAO Si-yan, ZHANG Yi, et al(郭振东, 赵思言, 张 毅,等). Military Medical Sciences(军事医学), 2015,(4):311.
[9] GAO Jing(高 静). China Medical Device Information(中国医疗器械信息), 2020, (2): 12.
[10] WANG Kai-jin, ZHU Xue-tong, XU Jian-cheng(王凯瑾, 朱学彤, 许建成). Chinese Journal of Clinical Laboratory Science(临床检验杂志), 2019(10): 760.
[11] ZHENG Kai-wen, HUANG Xiao-yuan, CHEN Du-bo, et al(郑凯文, 黄晓园, 陈渡波,等). International Journal of Laboratory Medicine(国际检验医学杂志), 2020,41(17):2066.
[12] YANG Hong-bo(杨鸿博). Master Dissertation(硕士论文). Shandong Agricultural University(山东农业大学), 2020.
[13] LIU Yi-qing(刘亦晴). Science and Technology Economy Market(科技经济市场), 2020,(10): 19.
[14] YAN Xiao-xiao(鄢晓小). Biotech World(生物技术世界), 2016,(1): 86.
[15] YANG Fang(杨 芳). China Modern Medicine(中国当代医药), 2010, 17(27): 12.
[16] WANG Ming-dong, WANG Zong-ting, WANG Feng-ying(王明栋, 王宗廷, 王凤英). Chemical Analysis and Meterage(化学分析计量), 2016, 25(1): 104.
[17] LIU Ling(刘 玲). Journal of Shanxi University·Natural Science Edition(山西大学学报·自然科学版), 2001, 24(3): 279.
[18] XU Yong-jian, LUO Rong-hui, GUO Mao-tian, et al(许永建, 罗荣辉, 郭茂田, 等). Laser Journal(激光杂志), 2007,(2): 13.
[19] WANG Zhen-gan, ZHOU Zhi-hui (王桢干, 周志慧). World Latest Medicine Information(世界最新医学信息文摘), 2019, 19(71): 151.
[20] CHEN Xue-ping(陈雪萍). Doctoral Dissertation(博士论文). Third Military Medical University(中国人民解放军陆军军医大学), 2019.
[21] TAO Zhan-hua, LIU Jun-xian, SHI De-qiang, et al(陶站华, 刘军贤, 师德强,等). Chinese Journal of Analytical Chemistry(分析化学), 2016, 44(3): 456.
[22] LI Hao(李 皓). Doctoral Dissertation(博士论文). The Second Military Medical University(第二军医大学), 2017.
[23] DONG Jin-ying(董金颖). Master Dissertation(硕士论文). Dalian Medical University(大连医科大学), 2018.
[24] SHAO Lin, WANG Yue, QU Han, et al(邵 琳, 王 玥, 曲 晗,等). Science and Technology of Food Industry(食品工业科技), 2020, 41(17): 225.
[25] Montanari L B, Sartori F G, Ribeiro D B M, et al. Journal of Water and Health, 2018, 16(2): 311.
[26] SU Yong-bo, SI Min-zhen, ZHANG De-qing, et al(苏永波, 司民真, 张德清,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2012, 32(7): 1825.
[27] LÜ Pu, GONG Ji-lai, WANG Xi-yang, et al(吕 璞, 龚继来, 王喜洋,等). China Environmental Science(中国环境科学), 2011, 31(9): 1523.
[28] Stöckel S, Meisel S, Lorenz B, Kloss S, et al. Journal of Biophotonics, 2017, 10(5): 727.
[29] Yi X, Song Y, Xu X, et al. Anal. Chem., 2021, 93(12): 5098.
[30] Berry D, Mader E, Lee TK, et al. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(2): E194.
[31] Song Y, Cui L, López J Á S, et al. Scientific Reports,2017, 7(1): 16648.
[32] Tao Y, Wang Y, Huang S, et al. Analytical Chemistry, 2017, 89(7): 4108.
[33] TAO Yi-fan, LING Jun-qi, GAO Yan(陶一帆, 凌均棨, 高 燕). The 11th National Dental Endodontics Conference of Chinese Stomatological Association(中华口腔医学会第十一次全国牙体牙髓病学术大会), 2018.
[34] Yang K, Li H Z, Zhu X et al. Analytical Chemistry, 2019, 91(9): 6296.
[35] YANG Kai, ZHU Yong-guan, CUI Li(杨 凯, 朱永官, 崔 丽). The 20th National Light Scattering Conference(第二十届全国光散射学术会议), 2019.
[36] Hong Weili, Caroline W Karanja, Nader S Abutaleb, et al. Analytical Chemistry, 2018, 90(6):3737.
[37] FU Shi-jie(付世杰). Master Dissertation(硕士论文). Changchun University of Science and Technology(长春理工大学), 2020.
[38] Germond A, Ichimura T, Horinouchi T, et al. Communications Biology, 2018, 1(1): 85.
[39] Kelly J, Patrick R, Patrick S, et al. Angewandte Chemie International Edition, 2018, 57(48):15686.
[40] SU Lan(苏 蓝). Master Dissertation(硕士论文). Beijing University of Technology(北京工业大学), 2016.
|
[1] |
LU Wen-jing, FANG Ya-ping, LIN Tai-feng, WANG Hui-qin, ZHENG Da-wei, ZHANG Ping*. Rapid Identification of the Raman Phenotypes of Breast Cancer Cell
Derived Exosomes and the Relationship With Maternal Cells[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3840-3846. |
[2] |
GUO Ge1, 3, 4, ZHANG Meng-ling3, 4, GONG Zhi-jie3, 4, ZHANG Shi-zhuang3, 4, WANG Xiao-yu2, 5, 6*, ZHOU Zhong-hua1*, YANG Yu2, 5, 6, XIE Guang-hui3, 4. Construction of Biomass Ash Content Model Based on Near-Infrared
Spectroscopy and Complex Sample Set Partitioning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3143-3149. |
[3] |
CHENG Fang-beibei1, 2, GAN Ting-ting1, 3*, ZHAO Nan-jing1, 4*, YIN Gao-fang1, WANG Ying1, 3, FAN Meng-xi4. Rapid Detection of Heavy Metal Lead in Water Based on Enrichment by Chlorella Pyrenoidosa Combined With X-Ray Fluorescence Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2500-2506. |
[4] |
LI Bin, SU Cheng-tao, YIN Hai, LIU Yan-de*. Hyperspectral Imaging Technology Combined With Machine Learning for Detection of Moldy Rice[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2391-2396. |
[5] |
ZHANG Jing, GUO Zhen, WANG Si-hua, YUE Ming-hui, ZHANG Shan-shan, PENG Hui-hui, YIN Xiang, DU Juan*, MA Cheng-ye*. Comparison of Methods for Water Content in Rice by Portable Near-Infrared and Visible Light Spectrometers[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2059-2066. |
[6] |
HUANG Xiao-wei1, ZHANG Ning1, LI Zhi-hua1, SHI Ji-yong1, SUN Yue1, ZHANG Xin-ai1, ZOU Xiao-bo1, 2*. Detection of Carbendazim Residue in Apple Using Surface-Enhanced Raman Scattering Labeling Immunoassay[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1478-1484. |
[7] |
SHI Zhi-feng1, 2, LIU Jia2, XIAO Juan2, ZHENG Zhi-wen1*. Investigation of Novel Method for Detecting Vanillin Based on X-Ray Diffraction Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1563-1568. |
[8] |
WANG Yi-tao1, WU Cheng-zhao1, HU Dong1, SUN Tong1, 2*. Research Progress of Plasticizer Detection Based on Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1298-1305. |
[9] |
SI Gan-shang1, 2, LIU Jia-xiang1, LI Zhen-gang1, 2, NING Zhi-qiang1, 2, FANG Yong-hua1, 2*, CHENG Zhen1, 2, SI Bei-bei1, 2, YANG Chang-ping1, 2. Raman Signal Enhancement for Liquid Detection Using a New Sample Cell[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 712-717. |
[10] |
DONG Xin-xin, YANG Fang-wei, YU Hang, YAO Wei-rong, XIE Yun-fei*. Study on Rapid Nondestructive Detection of Pork Lean Freshness Based on Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 484-488. |
[11] |
CHEN Yu-nan1, 2, 3, YANG Rui-fang1, 3*, ZHAO Nan-jing1, 3*, ZHU Wei1, 2, 3, CHEN Xiao-wei1, 2, 3, ZHANG Rui-qi1, 2, 3. Research on Measuring Oil Film Thickness Based on Laser-Induced Water Raman Suppression Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3954-3962. |
[12] |
YAN Kang-ting1, 2, HAN Yi-fang1, 2, WANG Lin-lin1, 2, DING Fan3, LAN Yu-bin1, 2*, ZHANG Ya-li2, 3*. Research on the Fluorescence Spectra Characteristics of Abamectin Technical and Preparation Solution[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(11): 3476-3481. |
[13] |
ZHANG Qian, DONG Xiang-hui, YAO Wei-rong, YU Hang, XIE Yun-fei*. Surface-Enhanced Raman Spectroscopy for Rapid Detection of Flunixin Meglumine Residues in Pork[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3155-3160. |
[14] |
HU Yu-xia1, CHEN Jie1, SHAO Hui1, YAN Pu1, XU Heng1, SUN Long1, XIAO Xiao1, XIU Lei3, FENG Chun2GAN Ting-ting2, ZHAO Nan-jing2*. Research Progress of Spectroscopy Detection Technologies for Waterborne Pathogens[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(09): 2672-2678. |
[15] |
DONG Xiang-hui, YANG Fang-wei, YU Hang, YAO Wei-rong, XIE Yun-fei*. Papid Detection of Zilpaterol Residues in Pork by Surface-Enhanced
Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(09): 2843-2847. |
|
|
|
|