|
|
|
|
|
|
Research Progress in the Design of Carbazole-Based Organic Room
Temperature Phosphorescence Materials |
WANG Xiao-ao1, ZHAO Lu1, BAI Yun-feng1, 2*, FENG Feng1* |
1. Shanxi Provincial Key Laboratory of Chemical Biosensing, School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
2. School of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China
|
|
|
Abstract Organic room temperature phosphorescence (oRTP) materials have the advantages of good processability, excellent biocompatibility, low biotoxicity, and low cost, which have become the focus of functional materials research. Among them, carbazole-based oRTP materials have been rapidly developed -in terms of molecular structure design, performance regulation, and optimization, and have been more widely used in anti-counterfeiting, biooptical imaging, information encryption, and other applications. Carbazole is a nitrogen-containing heterocyclic compound with a rigid planar conjugated structure and excellent hole transport properties and thermal stability. In addition, carbazole's planarization structure is conducive to intermolecular stacking interaction, thus strengthening the intermolecular electron coupling effect and stabilizing the triplet excitons. In addition, carbazole, as an excellent chromophore, has been extensively modified to obtain better RTP properties. This paper describes the luminescence mechanism of oRTP materials. It summarizes the design strategies of carbazole-based oRTP materials with long phosphor lifetime, including: (1) Intermolecular electron coupling: face-to-face packing or H-aggregation can stabilize triplet excitons, which is generally conducive to efficient and long-lived RTP. (2) Spin-orbit coupling: the strong spin-orbit coupling of heavy atoms can efficiently promote intersystem crossing (ISC) of electrons from the first electron excited singlet state to the lowest excited triplet state (S1-T1) or from singlet state to triplet state (Sn-T<i>n, n≥1) and induce phosphorescence emission. (3) Exciton separation systems: by constructing a distorted donor-acceptor system, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) are separated, thereby reducing the energy gap (ΔEST) between singlet and triplet states and increasing the intersystem crossing rate (kISC).(4) Polymer encapsulation system: polymer encapsulation can build a dense and rigid external environment to effectively inhibit non-radiative transition and oxygen diffusion, significantly improve RTP efficiency, and extend RTP life. (5) Hydrogen bond system: the interaction of hydrogen bonds greatly weakens molecular vibration and non-radiation inactivation, improves its tolerance to temperature, and can shield water and oxygen. Then, the application of carbazole-based oRTP materials in anti-counterfeiting and other aspects is introduced. Finally, the challenges faced in this field and the research directions worthy of attention are discussed. In summary, challenges and opportunities coexist; it can be expected that -research on carbazole-based oRTP materials will become a new shining point in the field of organic luminescent materials. With continuous exploration and innovation, such materials will likely show a broader application prospect in the future.
|
Received: 2025-01-13
Accepted: 2025-04-24
|
|
Corresponding Authors:
BAI Yun-feng, FENG Feng
E-mail: baiyunfeng1130@126.com;feng-feng64@263.net
|
|
[1] Forni A, Lucenti E, Botta C, et al. Journal of Materials Chemistry C, 2018, 6(17): 4603.
[2] Yan X, Peng H, Xiang Y, et al. Small, 2022, 18(1): 2104073.
[3] Yu Y, Fan Y Y, Wang C, et al. Materials Chemistry Frontiers, 2021, 5(2): 817.
[4] Zhao W J, He Z K, Tang B Z. Nature Reviews Materials, 2020, 5(12): 869.
[5] Wu Z, Nitsch J, Marder T B. Advanced Optical Materials, 2021, 9(20): 2100411.
[6] Yang Z Y, Mao Z, Zhang X P, et al. Angewandte Chemie-International Edition, 2016, 55(6): 2181.
[7] Gao H Q, Gao Z Y, Jiao D, et al. Small, 2021, 17(22): 2005449.
[8] Lin X H, Wang J, Ding B B, et al. Angewandte Chemie International Edition, 2021, 60(7): 3459.
[9] Wang Y T, Liu W J, Ren L T, et al. Materials Chemistry Frontiers, 2019, 3(8): 1661.
[10] Yang J, Gao X M, Xie Z L, et al. Angewandte Chemie—International Edition, 2017, 56(48): 15299.
[11] Bi X Q, Shi Y G, Peng T, et al. Advanced Functional Materials, 2021, 31(24): 2101312.
[12] Chen Z J, Li M K, Qiu W D, et al. Journal of Materials Chemistry C, 2021, 9(44): 15998.
[13] Xu Q Y, Ma L W, Sun S Y, et al. Journal of Materials Chemistry C, 2021, 9(41): 14623.
[14] Yao Z Q, Xu J, Zou B, et al. Angewandte Chemie—International Edition, 2019, 58(17): 5614.
[15] Ling K, Shi H F, Wang H, et al. Advanced Optical Materials, 2019, 7(24): 1901076.
[16] Kukhta N A, Bryce M R. Materials Horizons, 2021, 8(1): 33.
[17] Nhari L M, El-Shishtawy R M, Asiri A M. Dyes and Pigments, 2021, 193: 109465.
[18] Wang Y G, Sun Q K, Yue L T, et al. Advanced Optical Materials, 2021, 9(21): 2101075.
[19] Gong Y Y, Chen G, Peng Q, et al. Advanced Materials, 2015, 27(40): 6195.
[20] He Z H, Gao H Q, Zhang S T, et al. Advanced Materials, 2019, 31(18): 1807222.
[21] Huang Q Q, Mei X F, Xie Z L, et al. Journal of Materials Chemistry C, 2019, 7(9): 2530.
[22] Li B W, Gong Y B, Wang L, et al. The Journal of Physical Chemistry Letters, 2019, 10(22): 7141.
[23] Mane S K B, Mu Y X, Ubba E, et al. Journal of Materials Chemistry C, 2019, 7(48): 15219.
[24] Xue P C, Wang P P, Chen P, et al. Chemical Science, 2017, 8(9): 6060.
[25] Zhang Z Z, Tang L L, Fan X J, et al. Journal of Materials Chemistry C, 2018, 6(33): 8984.
[26] GONG Zhu-ke, XU Hui(龚筑轲, 许 辉). Progress in Chemistry(化学进展), 2022, 34(11): 2432.
[27] Zhang H Y, Ma H L, Huang W B, et al. Materials Horizons, 2021, 8(10): 2816.
[28] Guo X, Zhen J S, Long J Q, et al. Journal of Luminescence, 2023, 257: 119720.
[29] Qian C, Zhang X, Ma Z M, et al. CCS Chemistry, 2024, 6(3): 798.
[30] Yin Z, Gu M X, Ma H L, et al. Angewandte Chemie—International Edition, 2021, 60(4): 2058.
[31] Yuan S, Zhang Y F, Chen J W, et al. Advanced Optical Materials, 2022, 10(15): 2200090.
[32] Zheng K L, Yang X M, Ni F, et al. Chemical Engineering Journal, 2021, 408: 127309.
[33] Zhu Y, Guan Y, Niu Y F, et al. Advanced Optical Materials, 2021, 9(21): 2100782.
[34] JIN Wei-jun(晋卫军). Molecular Emission Spectroscopy Analysis(分子发射光谱分析). Beijing: Chemical Engineering Press(北京:化学工业出版社), 2018.
[35] Yuan S, Sun Q K, Wang Y G, et al. Journal of Materials Chemistry C, 2021, 9(26): 8302.
[36] Shi H F, Yao W, Ye W P, et al. Accounts of Chemical Research, 2022, 55(23): 3445.
[37] Xu S, Chen R F, Zheng C, et al. Advanced Materials, 2016, 28(45): 9920.
[38] Fu H R, Zhang K, Li T, et al. Journal of Solid State Chemistry, 2023, 326: 124216.
[39] Li X N, Yang M X, Chen X L, et al. Small, 2019, 15(45): 1903270.
[40] Shen Q J, Wei H Q, Zou W S, et al. CrystEngComm, 2012, 14(3): 1010.
[41] Brannan A C, Phuoc N L, Linnolahti M, et al. Frontiers in Chemistry, 2023, 10: 1008658.
[42] Gao H Y, Shen Q J, Zhao X R, et al. Journal of Materials Chemistry, 2012, 22(12): 5336.
[43] Zhou Z H, Qiao C, Wang K, et al. Angewandte Chemie—International Edition, 2020, 59(48): 21677.
[44] Li Z W, Zhang X Y. Polymers, 2020, 12(4): 790.
[45] Fang B, Lai L M, Fan M Y, et al. Journal of Materials Chemistry C, 2021, 9(34): 11172.
[46] Jian M Y, Song Z C, Chen X J, et al. Chemical Engineering Journal, 2022, 429: 132346.
[47] Yang S Y, Zhang Y L, Kong F C, et al. Chemical Engineering Journal, 2021, 418: 129366.
[48] Dou X Y, Wang X, Xie X L, et al. Advanced Functional Materials, 2024, 34(23): 14069.
[49] Jiang J, Hu C, Wang Y, et al. Materials Today Chemistry, 2023, 30: 101548.
[50] Xu L H, Wei H S, Xie G H, et al. Advanced Functional Materials, 2024, 34(37): 2402428.
[51] Cai S Z, Shi H F, Zhang Z Y, et al. Angewandte Chemie—International Edition, 2018, 57(15): 4005.
[52] Cai S Z, Yao X K, Ma H L, et al. Aggregate, 2023, 4(3): e320.
[53] Yan X, Peng H, Xiang Y, et al. Small, 2022, 18(1): 2104073.
[54] Zhou M S, Gao P F, Jiang Y Y, et al. Dyes and Pigments, 2021, 195: 109715.
[55] Song X Q, Lu G, Man Y, et al. Angewandte Chemie—International Edition, 2023, 62(21): e202300980.
|
[1] |
SUI Xin-hao1, 2, ZHAO Xu-wei1, 2, BAO Xin-jian1, 2, HE Ming-yue3, LIU Xi1, 2*. Preliminary Raman Spectroscopic Study of Szaibélyite[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(04): 1096-1102. |
[2] |
MA Xiao-hui1, LIU Jia-chen1, WU Jin-yu1, MAO Jing1, HU Xiao-xia2, GUO An-ran1. Application of in Situ X-Ray Diffraction Spectroscopy in Crystal Structure Analysis of High-Entropy Pseudobrookite Ceramics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(02): 443-447. |
[3] |
WANG Zi-le, ZHANG Zhe*, ZHANG Yun-xue, XIANG Si-meng, WEI Zhen-bo, WEN Sheng-you, WANG Zhan-shan. Fabrication and Characterization of Multilayer Analyzer Crystals for
X-Ray Fluorescence Analysis on Light Elements[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(11): 3120-3127. |
[4] |
LIANG Wen-juan, WANG Hui-min, BAI Yun-feng, FENG Feng*. Study on Fluorescence Polarity Probes of Two Carbazole Pyridine-N-Oxide Internal Salts[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(06): 1600-1606. |
[5] |
XIAO Chun-yan1, YANG Chen1, ZHOU Xin-de2. Double Fano Resonance Characteristics Based on Variable Period
Subwavelength Dielectric Gratings Multilayer Films[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(03): 681-687. |
[6] |
CHENG Mao-jie1, 2, DONG Kun-peng1, 2, HU Lun-zhen1, 3, ZHANG Hui-li2, 4, LUO Jian-qiao2, 4, QUAN Cong2, 4, HAN Zhi-yuan1, 2, SUN Dun-lu2, 4*. Influence of Thermal-Bonding, Concave End-Face and Crystal Rod Diameter on the Er∶YSGG Mid-Infrared Laser Perfomance[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(02): 571-579. |
[7] |
LIU Guo-peng1, YOU Jing-lin1*, WANG Jian1, GONG Xiao-ye1, ZHAO Yu-fan1, ZHANG Qing-li2, WAN Song-ming2. Application of Aerodynamic Levitator Laser Heating Technique: Microstructures of MgTi2O5 Crystal and Melt by in-situ Superhigh Temperature Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2507-2513. |
[8] |
LI Ming1, HONG Han-lie2. Gemological and Spectrographic Characteristics of Light-Green Tourmaline of Afghanistan[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2195-2201. |
[9] |
XU Ming-kun, LIN Jia-xiang, ZHANG Xiao-lin, LI Zhen-yin, WANG Ya-ming, LIU Chun-tai, SHEN Chang-yu, SHAO Chun-guang*. In Situ Detection of Structural Evolution of Isotropic Polypropylene Crystals During Uniaxial Stretching by Two-Dimensional X-Ray Diffraction Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1426-1433. |
[10] |
ZHANG Tie-zhu1, 2, LI Yu3, 4, ZHANG Yu-xuan2, 3, ZHU Xue-feng1, OUYANG Shun-li3*, ZHANG Jin-shan1*. The Crystal Orientation Maps and Distribution of Mnoazite Minerals in Aegirine-Type Ores in Bayan Obo: Constraints From Raman Mapping[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1183-1191. |
[11] |
ZHU Xiang1, 2, YUAN Chao-sheng2, LIANG Yong-fu2, WANG Zheng2, LI Hai-ning2, HUANGFU Zhan-biao1, ZHOU Song1, ZHOU Bo1, DONG Xing-bang1, CHENG Xue-rui2*, YANG Kun1*. Study on the Effect of Cooling Rate on Crystallization Process and
Product of [C12mim][BF4] Melt Based on POM, Raman and SAXS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 801-805. |
[12] |
WANG Chong1, WANG Jing-hua1, 2, LI Dong-dong1, SHE Jiang-bo2. Preparation of Gd3+-Doped LiYF4∶Yb3+/Ho3+ Micro-Crystal and the Application Research in Anti-Counterfeiting[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(11): 3581-3587. |
[13] |
WU Yuan-jie1,2, YE Hui-qi1,2, HAN Jian1,2, XIAO Dong1,2*. Supercontinuum Generation Degradation of 1 040 nm Laser Pumped Photonic Crystal Fibers[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3588-3594. |
[14] |
LI Xiu, PAN Jie, HUANG Min*, XI Yong-hui, LIU Zi-han. Influence of Assembly Conditions on Spectral Properties of SiO2 Structural Color Coatings Prepared by Rapid Coating Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(07): 2314-2320. |
[15] |
HUANG Wei-bo, CHEN Jia-yun, HUANG Fang, HUANG Li-shan, OUYANG Jian-ming*. Effects of Different Molecular Weight of Gracilaria Lemaneiformis Polysaccharide on Calcium Oxalate Crystal[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(04): 1163-1170. |
|
|
|
|