|
|
|
|
|
|
Application of in Situ X-Ray Diffraction Spectroscopy in Crystal Structure Analysis of High-Entropy Pseudobrookite Ceramics |
MA Xiao-hui1, LIU Jia-chen1, WU Jin-yu1, MAO Jing1, HU Xiao-xia2, GUO An-ran1 |
1. School of Material Science and Engineering, Tianjin University, Tianjin 300350, China
2. Analysis and Testing Center, Tianjin University, Tianjin 300072, China
|
|
|
Abstract Present research on high-entropy ceramics focuses primarily on creating high-performance ceramics by element substitution or addition. It often ignores changes in the crystal structure of high-entropy ceramics due to the complexity of the composition and their effects on properties. This work systematically studies the formation process, crystal structure change, and effect on the thermal expansion coefficient of high-entropy pseudobrookite using in-situ X-ray diffraction spectroscopy. The results show that the formation process of high-entropy pseudobrookite ceramics is a slow solid-phase reaction. Compared to its corresponding single-phase ceramic, the lattice constants of high-entropy (Mg,Co,Ni,Zn)Ti2O5 change, with the a-axis and b-axis lattice constants slightly increasing and the c-axis lattice constants decreasing. Additionally, as the temperature rises, the increasing lattice constants along each crystal axis weaken, reducing the thermal expansion coefficient and anisotropy of the thermal expansion coefficient. These findings show that the in-situ X-ray diffraction spectroscopy technique effectively elucidates the crystal structure evolution process and its impact on properties during the formation of high-entropy pseudobrookite ceramics. Moreover, all the above results indicate that this technique shows great promise for resolving high-entropy ceramic crystal structures and advancing their application prospects.
|
Received: 2023-12-14
Accepted: 2024-05-29
|
|
|
[1] Rost C M, Sachet E, Borman T, et al. Nature Communications, 2015, 6(1): 8485.
[2] Xiang Huimin, Xing Yan, Dai Fuzhi, et al. Journal of Advanced Ceramics, 2021, 10: 385.
[3] Li Haoyu, Zhou Yue, Liang Zhihao, et al. Coatings, 2021, 11(6): 628.
[4] LU Nan, HE Peng-fei, ZHONG Xiao-yu, et al(鲁 楠, 何鹏飞, 种晓宇, 等). Journal Aerospace Materials & Technology(宇航材料工艺), 2023, 53(1): 1.
[5] LIU Qian, LIU Han-lian, HUANG Chuan-zhen, et al(刘 倩, 刘含莲, 黄传真, 等). Tool Engineering(工具技术), 2023, 57(9): 16.
[6] Sun Yannan, Xiang Huimin, Dai Fuzhi, et al. Journal of Advanced Ceramic, 2021, 10: 596.
[7] Harrington T J, Gild J, Sarker P, et al. Acta Mater, 2019, 166: 271.
[8] Gild J, Braun J, Kaufmann K, et al. Journal of Materiomics, 2019, 5: 337.
[9] Liu Xuening, Su Congxuan, Zhong Ya, et al. Journal of the European Ceramic Society, 2022, 42(13): 5964.
[10] Jasiewicz K, Cieslak J, Kaprzyket S, et al. Journal of Alloys and Compounds, 2015, 648: 307.
[11] Yang Chengchao, Wu Haorong, Song Hongyuan, et al. Journal of Alloys and Compounds, 2023, 940: 168802.
[12] MAO Jing, GUO Qian-ying, MA Li-li, et al(毛 晶, 郭倩颖, 马利利, 等). Analysis and Testing Technology and Instruments(分析测试技术与仪器),2023, 29(1): 111.
[13] XU Ming-kun, LIN Jia-xiang, ZHANG Xiao-lin, et al(徐明锟, 林嘉翔, 张效琳, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2023, 43(5): 1426.
[14] Kornaus K, Rutkowski P, Lach R, et al. Journal of European Ceramic Society, 2021, 41: 1498.
[15] Nakagoshi Y, Suzuki Y. Journal of Asian Ceramic Societies, 2015, 3: 334.
[16] Cleveland J J, Bradt R C. Journal of the American Ceramic Society, 1978, 61(11-12): 478.
[17] Suzuki Y, Shinoda Y. Science and Technology of Advanced Materials, 2011, 12: 034301.
[18] Wu Jinyu, Ma Xiaohui, Hu Xiaoxia, et al. Journal of Advanced Ceramics, 2022, 11(10):1654.
[19] GUO Yu, HUANG Zhi-wei, HU Yu-qing, et al(郭 宇, 黄志伟, 胡雨青, 等). Acta Physico-Chimica Sinica(物理化学学报),2024, doi: 10.3866PKU.WHXB202311015.
[20] Wang Meili, Shi Guanghua, Qin Jiaqian, et al. European Journal of Mineralogy, 2018, 30(5): 939.
[21] Post J E, Veblen D R. American Mineralogist, 1990, 75(5-6): 477.
[22] DAI Chao-hua, CHENG Zhen-jin, ZHOU Jun-ru(戴超华, 成震今, 周君儒). Metallurgical Analysis(冶金分析). 2022, 42(12): 72.
[23] Wang Hejing, Zhou Jian. Journal of Applied Crystallography, 2000, 33(4): 1128.
[24] Mittal V K, Chandramohan P, Bera S, et al. Solid State Communications, 2006, 137(1-2): 6.
[25] Jagtap N, Bhagwat M, Awati P, et al. Thermochimica Acta, 2005, 427(1-2): 37.
[26] ZHAO Miao, ZHOU Yan, FU Bin, et al(赵 淼, 周 严, 傅 斌, 等). Journal of Tianjin Normal University: Natural Science Edition[天津师范大学学报(自然科学版)],2005,(4): 37.
|
[1] |
ZHU Xiang1, 2, YUAN Chao-sheng2, LIANG Yong-fu2, WANG Zheng2, LI Hai-ning2, HUANGFU Zhan-biao1, ZHOU Song1, ZHOU Bo1, DONG Xing-bang1, CHENG Xue-rui2*, YANG Kun1*. Study on the Effect of Cooling Rate on Crystallization Process and
Product of [C12mim][BF4] Melt Based on POM, Raman and SAXS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 801-805. |
[2] |
College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China
. Investigation on Terahertz Spectroscopy of Food Additives Based on Dispersion-Correction Functional Theory[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(01): 100-104. |
[3] |
WANG Yu1, LUO Lan1, 2*, GUO Rui1, SUN Chuan-yao1, GAO Ming-yuan1. Cation Substitution-Dependent Phase Transition and Color-Tunable Emission in (Ca1-xBax)2SiO4∶Eu Phosphor Series[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(06): 1895-1901. |
[4] |
ZHANG Hong1, WANG Le1*, LUO Dong1, ZHENG Zi-shan1, LI Yang-hui1, 2, PAN Gui-ming1. Structural and Luminescence Properties of Eu2+ Doped CaAlSiN3 Silicon Nitride Red Emitting Phosphor[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(01): 59-64. |
[5] |
LIN Qing-feng, ZHOU Liang-liang, SUN Yan-qiong*, CHEN Yi-ping. The Hydrothermal Synthesis, Crystal Structure and Spectral Properties of a 2D Pr-Cd Heterometal Complex[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(10): 3034-3039. |
[6] |
PENG Chen-jia1, WANG Ke-hua1*, LU Wei-xue1, GUAN Chun-qian1, HU Ya-jing1, MA Shuang1, ZHU Ming-chang2, GAO En-jun2. Synthesis, Crystal Structure and DNA/BSA Interaction of a Ni(Ⅱ) Coordination Compound[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(02): 559-564. |
[7] |
SU Ya-jing, FAN Ting-ting, ZHANG Mei-na, LI Xia*. 4,4’-Bipyridine Bridged Chain Zn(Ⅱ) Complex: Synthesis, Crystal Structure and Fluorescence Sensitization for Tb (Ⅲ) Ion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2170-2174. |
[8] |
YANG Hong-jun, CHAI Xiao-li, WANG Min, LI Bing*. Study on Phase Transition Process of NaCl-H2O and NaCl-KCl-H2O at Low Temperature with in Situ XRD[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(03): 953-957. |
[9] |
LI Rui, FAN Ting-ting, QU Xiang-long, DONG Gao-yun, LI Jia-jia, LI Xia*, SONG Yu-xin, ZHAO Xin-meng, LI Xiang . Fluorescence Properties and the Detection of Nitrobenzene of Lanthanides Complex with 3,4-Thiophenedicarboxylic Acid and 1,10 Phenanthroline[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(08): 2522-2526. |
[10] |
WANG Xin-zhou1, 2, DENG Yu-he1*, WANG Si-qun2*, YU Wang-wang1, 3, HE Shuang-shuang1, ZHANG Jie1. Study on the Structure and Nanomechanical Properties of Organic Montmorillonite Reinforced Urea-Formaldehyde Adhesive[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(06): 1680-1684. |
[11] |
GUO Zhen-qiang1, CHEN Yi-ping1, 2*, HUANG Meng-meng1, ZHOU Meng-qian1, SUN Yan-qiong1. The Hydrothermal Synthesis, Structure and Spectroscopy Study on (H2dap)6H[V12B16O54(OH)4]·12H2O(dap=1,2-diaminopropane)[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(09): 2625-2628. |
[12] |
MENG Zeng-rui1, 2, SHANG Li-ping3, DU Yu2, 4*, DENG Hu1 . Absorption Characteristics and Simulation of LLM-105 in the Terahertz Range [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(07): 1779-1782. |
[13] |
FAN Ting-ting1, SONG Shuang1, 2, ZHANG Yi-hua1, 3, HUO Rui1, LI Xia1*, DING Xing-yi1, LIU Yang1, ZHAO Xu1, YAN Chun-hui1. Synthesis, Crystal Structure and Fluorescence Properties of Two Tb(Ⅲ) Complexes [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(07): 1917-1920. |
[14] |
QIU Li-xia1, WAN Fang1, ZHU Bin-bin1, SUN Yan-qiong1,2*, YOU Yi1*, CHEN Yi-ping1 . Synthesis, Structure and Spectroscopy Study of a 1D Copper Coordination Polymer Based on a Carboxybenzyl Viologen Ligand and SCN-Anion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(05): 1340-1344. |
[15] |
ZHANG Bao-yong1, 2, 3, LIU Chuan-hai2, 3*, WU Qiang2, 3, GAO Xia3, 4 . Raman Spectroscopic Studies on CO2—CH4—N2 Mixed-Gas Hydrate System[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(06): 1560-1565. |
|
|
|
|