|
|
|
|
|
|
Selection of Scanning Bands for Hyperspectral Absorption Applications |
TAO Meng-meng, WU Hao-long, WANG Ya-min, WANG Sheng, WANG Ke, CAO Hui-lin, YE Jing-feng* |
State Key Laboratory of Laser Interaction with Matter, Northwest Institute of Nuclear Technology, Xi'an 710024, China
|
|
|
Abstract Compared with conventional narrow-band-scanning absorption spectroscopy, hyperspectral absorption spectroscopy shows great technical advantages thanks to more abundant absorption information covering a wider spectral range. In practical hyperspectral absorption applications, the laser source can usually be tuned within a wide spectral span (>20 nm). However, full-span tuning puts very high data acquisition, storage, and processing requirements, leading to a high system cost and mammoth workload. Consequently, scanning band selection with proper bandwidth becomes crucial for hyperspectral absorption applications. Here, a numerical method for scanning band selection is developed based on the frequency-dependent lower-state energy. And favourable scanning bands around 1.3 and 2 μm wavebands are selected. For the 1.3 μm waveband, the selected bands are consistent with those exploited in publications, validating the feasibility and correctness of the method. For the 2 μm waveband, the superiority of the selected bands in temperature measurement is verified with experimental data recorded at given operation conditions. Advantageous scanning bands around 2 μm are provided concerning the wide operation condition in practical applications. Calculations demonstrate that proper scanning bands exist at the 1.8 μm short and 1.9 μm long waveband, with the optimum at 1.86 μm. A larger scanning bandwidth may not result in the best temperature measurement accuracy, but generally, it brings about a smaller and more controllable uncertainty over the whole spectrum. These findings are instructive for field applications of hyperspectral absorption spectroscopy in engine combustion field diagnosis.
|
Received: 2023-09-13
Accepted: 2024-02-19
|
|
Corresponding Authors:
YE Jing-feng
E-mail: yejingfeng@nint.ac.cn
|
|
[1] Bolshov M A, Kuritsyn Y A, Romanovskii Y V. Spectrochim. Acta Part B, 2015, 106: 45.
[2] Goldenstein C S, Spearrin R M, Jeffries J B, et al. Prog. Energ. Combust. Sci., 2017, 60: 132.
[3] Fu B, Zhang Ch, Lyu W, et al. Appl. Spectrosc. Rev., 2022, 57: 112.
[4] Grauer S J, Emmert J, Sanders S T, et al. Meas. Sci. Tchnol., 2019, 30: 105401.
[5] Kranendonk L A, Walewski J W, Kim T, et al. Proc. Combust. Inst., 2005, 30: 1619.
[6] An X, Kraetschmer T, Takami K, et al. Appl. Opt., 2011, 50(4): A29.
[7] An X, Brittelle M S, Lauzier P T, et al. Appl. Optics, 2015, 54: 9190.
[8] Melin S T, Sanders S T. J. Quant. Spectrosc. Radiat. Transf., 2016, 180: 184.
[9] Rein K D, Roy S, Sanders S T, et al. Appl. Phys. B, 2017, 123: 88.
[10] Melin S T, Sanders S T, Nasir E F. J. Quant. Spectrosc. Radiat. Transf., 2020, 253: 107079.
[11] Kranendonk L A, An X, Caswell A W, et al. Opt. Express, 2007, 15: 15115.
[12] Kranendonk L A, Huber R, Fujimoto J G, et al. Proc. Combust. Inst., 2007, 31: 783.
[13] Kranendonk L A, Caswell A W, Hagen C L, et al. J. Prop. Power, 2009, 25: 859.
[14] Caswell A W, Roy S, An X, et al. Appl. Opt., 2013, 52: 2893.
[15] Ma L, Li X, Sanders S T, et al. Opt. Express, 2013, 21: 1152.
[16] Kraetschmer T, Waleski J W, Sanders S T. Opt. Lett., 2006, 31: 3179.
[17] Schroeder P J, Wright R J, Coburn S, et al. Proc. Combust. Inst., 2017, 36: 4565.
[18] Rieker G B, Giorgetta F R, Swann W C, et al. Optica, 2014, 1: 290.
[19] Boudreau S, Levasseur S, Perilla C, et al. Opt. Express, 2013, 21: 7411.
[20] Suh M, Yang Q, Yang K, et al. Science, 2016, 354(6312): 600.
[21] Walewski J W, Sanders S T. Appl. Phys. B, 2004, 79: 415.
[22] Hult J, Watt R S, Kaminski C F. Opt. Express, 2007, 15: 11385.
[23] Watt R S, Kaminski C F, Hult J. Appl. Phys. B, 2008, 90: 47.
[24] Werblinski T, Engel S R, Engelbrecht R, et al. Opt. Express, 2013, 21: 13656.
[25] Werblinski T, Mittmann F, Altenhoff M, et al. Appl. Phys. B, 2015, 118: 153.
[26] Blume N G, Ebert V, Dreizler A, et al. Meas. Sci. Technol., 2016, 27: 015501.
[27] Ma L, Cai W, Caswell A W, et al. Opt. Express, 2009, 17: 8602.
[28] Caswell A W. Ph. D. Dissertation (Wisconsin: University of Wisconsin-Madison). 2009.
[29] An X, Caswell A W, Sanders S T. J. Quant. Spectrosc. Radiat. Transf., 2011, 112: 779.
[30] An X, Caswell A W, Lipor J J, et al. J. Quant. Spectrosc. Radiat. Transfer., 2011, 112: 2355.
[31] An X, Caswell A W, Lipor J J, et al. Appl. Spectrosc., 2015, 69: 464.
[32] Nagali V, Hanson R K. Appl. Opt., 1997, 36(36): 9518.
[33] Zhou X, Liu X, Jeffries J B, et al. Meas. Sci. Technol., 2003, 14: 1459.
[34] Zhou X, Jeffries J B, Hanson R K. Appl. Phys. B, 2005, 81: 711.
[35] Zhou X, Liu X, Jeffries J B, et al. Meas. Sci. Technol., 2005, 16: 2437.
[36] Liu X, Jeffries J B, Hanson R K, et al. Appl. Phys. B, 2006, 82: 469.
[37] Farooq A, Jeffries J B, Hanson R K. Meas. Sci. Technol., 2008, 19: 075604.
[38] Tao M, Tao B, Hu Z, et al. Opt. Express, 2017, 25: 32386.
[39] TAO Meng-meng, TAO Bo, YE Jing-feng, et al(陶蒙蒙, 陶 波, 叶景峰, 等). Acta Phys. Sin.(物理学报), 2020, 69(3): 034205.
[40] TAO Meng-meng, WANG Ya-min, WU Hao-long, et al(陶蒙蒙, 王亚民, 吴昊龙, 等). Acta Phys. Sin.(物理学报), 2022, 71(11): 114203.
[41] WANG Ya-min, WU Hao-long, TAO Meng-meng, et al(王亚民, 吴昊龙, 陶蒙蒙, 等). Modern Applied Physics(现代应用物理), 2024, 15(2): 020301.
[42] TAO Meng-meng, WU Hao-long, WANG Ya-min, et al(陶蒙蒙, 吴昊龙, 王亚民, 等). Mod. Appl. Phys.(现代应用物理),2023, 14: 020301.
[43] Tao M, Wang Y, Wu H, et al. J. Quant. Spectrosc. Radiat. Transf., 2023, 302: 108569.
|
[1] |
ZHANG Le-wen1, 2, WANG Qian-jin1, 3, SUN Peng-shuai1, PANG Tao1, WU Bian1, XIA Hua1, ZHANG Zhi-rong1, 3, 4, 5*. Analysis of Interference Factors and Study of Temperature Correction Method in Gas Detection by Laser Absorption Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 767-773. |
[2] |
SHAO Guo-dong1, LI Zheng-hui1, GUO Song-jie1, ZOU Li-chang1, DENG Yao1, LU Zhi-min1, 2, 3, YAO Shun-chun1, 2, 3*. Research on Gas Concentration Measurement Method Based on Gradient Descent Method to Fit Spectral Absorption Signal Directly[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3256-3261. |
[3] |
XIAO Hu-ying1, YANG Fan1, XIANG Liu1, HU Xue-jiao2*. Jet Vacuum Enhanced Tunable Diode Laser Absorption Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(10): 2993-2997. |
[4] |
LI Zheng-hui1,3, YAO Shun-chun1,3*, LU Wei-ye2, ZHU Xiao-rui1,3, ZOU Li-chang1,3, LI Yue-sheng2, LU Zhi-min1,3. Study on Temperature Correction Method of CO2 Measurement by TDLAS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2048-2053. |
[5] |
LI Meng, GUO Jin-jia*, YE Wang-quan, LI Nan, ZHANG Zhi-hao, ZHENG Rong-er. Study on TDLAS System with a Miniature Multi-Pass Cavity for CO2 Measurements[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(03): 697-701. |
[6] |
WANG Zhe1, WANG Yan1, ZHANG Rui2, ZHAO Xue-hong1*, LIU Qiao-jun2, LI Cong-rong2 . A Singular Value Decomposition Method for Tunable Diode Laser Absorption Spectroscopy System to Remove Systematic Noises[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(10): 3369-3376. |
[7] |
KONG Hai-yang1, 2, 3, SUN Lan-xiang1, 3*, HU Jing-tao1, 3, ZHANG Peng1, 2, 3. Automatic Method for Selecting Characteristic Lines Based on Genetic Algorithm to Quantify Laser-Induced Breakdown Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(05): 1451-1457. |
[8] |
YAN Jie, ZHAI Chang, WANG Xiao-niu, HUANG Wen-ping . The Research of Oxygen Measurement by TDLAS Based on Levenberg-Marquardt Nonlinear Fitting[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(06): 1497-1500. |
[9] |
QI Ru-bin1, HE Shu-kai1, LI Xin-tian1, WANG Xian-zhong2 . Simulation of TDLAS Direct Absorption Based on HITRAN Database [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(01): 172-177. |
[10] |
CAI Ting-dong1, 2, GAO Guang-zhen1, WANG Min-rui1, WANG Gui-shi2, GAO Xiao-ming2 . Measurements of CO2 Concentration at High Temperature and Pressure Environments Using Tunable Diode Laser Absorption Spectroscopy [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(07): 1769-1773. |
[11] |
LI Han, LIU Jian-guo, HE Ya-bai, HE Jun-feng, YAO Lu, XU Zhen-yu, CHEN Jiu-ying, YUAN Song, KAN Rui-feng* . Simulation and Analysis of Second-Harmonic Signal Based on Tunable Diode Laser Absorption Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33(04): 881-885. |
[12] |
GAO Nan1, DU Zhen-hui1*, TANG Miao2, YANG Jie-wen1, YANG Chun-mei1, WANG Yan1. System Parameters Selection and Optimization of Tunable Diode Laser Absorption Spectroscopy [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2010, 30(12): 3174-3178. |
[13] |
ZHANG Shuai, DONG Feng-zhong*, ZHANG Zhi-rong,WANG Yu, KAN Rui-feng,ZHANG Yu-jun,LIU Jian-guo, LIU Wen-qing. Monitoring of Oxygen Concentration Based on Tunable Diode Laser Absorption Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2009, 29(10): 2593-2596. |
[14] |
TU Xing-hua, LIU Wen-qing, ZHANG Yu-jun, DONG Feng-zhong, WANG Min, WANG Tie-dong, WANG Xiao-mei, LIU Jian-guo. Second-Harmonic Detection with Tunable Diode Laser Absorption Spectroscopy of CO and CO2 at 1.58 μm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2006, 26(07): 1190-1194. |
[15] |
KAN Rui-feng, LIU Wen-qing, ZHANG Yu-jun, LIU Jian-guo, WANG Min, GAO Shan-hu, CHEN Jun . Concentration Calibration Method of Ambient Trace-Gas Monitoring with Tunable Diode Laser Absorption Spectroscopy [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2006, 26(03): 392-395. |
|
|
|
|