光谱学与光谱分析 |
|
|
|
|
|
Simulation and Analysis of Second-Harmonic Signal Based on Tunable Diode Laser Absorption Spectroscopy |
LI Han, LIU Jian-guo, HE Ya-bai, HE Jun-feng, YAO Lu, XU Zhen-yu, CHEN Jiu-ying, YUAN Song, KAN Rui-feng* |
Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China |
|
|
Abstract Tunable diode laser absorption spectroscopy (TDLAS) is a new gas detection technique developed recently with high spectral resolution, high sensitivity and fast time response. The second-harmonic signal of wavelength modulation spectroscopy (WMS) is often used as the detection signal for gas concentration inversion. Using Simulink, a visual modeling and simulation platform, the authors simulated the WMS signal based on TDLAS, and got the second-harmonic signal by using lock-in amplifier algorithm. Digital orthogonal algorithm was studied in this paper. The relationship between second-harmonic signals and the modulation indexes was analyzed by comparing changes of second-harmonic under different modulation indexes, in order to find out the optimized parameters for second-harmonic detection.
|
Received: 2012-07-18
Accepted: 2012-09-25
|
|
Corresponding Authors:
KAN Rui-feng
E-mail: kanruifeng@aiofm.ac.cn
|
|
[1] Curl R F, Tittel F K. Annu. Rdp. Prog. Chem., Sect. C, 2002, 98:219. [2] XU Zhen-yu, LIU Wen-qing, KAN Rui-feng,et al(许振宇,刘文清,阚瑞峰,等). Journal of Atmospheric and Environmental Optics(大气与环境光学学报), 2011, 6(2):95. [3] Werle P. Spectrochimica Acta Part A, 1998, 54:197. [4] TU Xing-hua, ZHOU Jie(涂兴华,周 洁). Joumal of Nanjing University of Posts and Telecommunications·Natural Science(南京邮电大学学报·自然科学版), 2009, 29(5):46. [5] Philippe L C, Hanson R K. Applied Optics, 1993, 32(30): 6090. [6] Liu J T C, Jeffries J B, Hanson R K. Applied Physics B, 2004, 78:503. [7] Chang L S. Development of a Diode Laser Sensor for Measurement of Mass Flux in Supersonic Flow. TSD-184, Stanford University, 2011. [8] Pawel Kluczynski, Ove Axner. Applied Optics, 1999, 38(27):5803. [9] HUANG Yong-an, MA Lu, LIU Hui-min(黄永安, 马 路, 刘慧敏). MATLAB 7.0/Simulink 6.0 Modeling Simulation Development and Senior Engineering Application(MATLAB 7.0/Simulink 6.0建模仿真开发与高级工程应用). Beijing: Tsinghua University Press(北京:清华大学出版社), 2005. [10] HAN Li-zhu, WANG Hua(韩利竹, 王 华). MATLAB Electronic Simulation and Application(MATLAB电子仿真与应用). Beijing: National Defence Industry Press(北京:国防工业出版社), 2003.
|
[1] |
LIANG Wen-ke, WEI Guang-fen, WANG Ming-hao. Research on Methane Detection Error Caused by Lorentzian Profile Approximation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1683-1689. |
[2] |
PENG Wei, YANG Sheng-wei, HE Tian-bo, YU Ben-li, LI Jin-song, CHENG Zhen-biao, ZHOU Sheng*, JIANG Tong-tong*. Detection of Water Vapor Concentration in Sealed Medicine Bottles Based on Digital Quadrature Phase-Locked Demodulation Algorithm and TDLAS
Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 698-704. |
[3] |
ZHANG Le-wen1, 2, WANG Qian-jin1, 3, SUN Peng-shuai1, PANG Tao1, WU Bian1, XIA Hua1, ZHANG Zhi-rong1, 3, 4, 5*. Analysis of Interference Factors and Study of Temperature Correction Method in Gas Detection by Laser Absorption Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 767-773. |
[4] |
WANG Yue1, 3, 4, CHEN Nan1, 2, 3, 4, WANG Bo-yu1, 5, LIU Tao1, 3, 4*, XIA Yang1, 2, 3, 4*. Fourier Transform Near-Infrared Spectral System Based on Laser-Driven Plasma Light Source[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1666-1673. |
[5] |
LIU Jiang-qing1, YU Chang-hui2, 3, GUO Yuan2, 3, LEI Sheng-bin1*, ZHANG Zhen2, 3*. Interaction Between Dipalmityl Phosphatidylcholine and Vitamin B2
Studied by Second Harmonic Spectroscopy and Brewster Angle
Microscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1484-1489. |
[6] |
WAN Liu-jie1, 2, ZHEN Chao3, QIU Zong-jia1, LI Kang1, MA Feng-xiang3, HAN Dong1, 2, ZHANG Guo-qiang1, 2*. Research of High Precision Photoacoustic Second Harmonic Detection Technology Based on FFT Filter[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(10): 2996-3001. |
[7] |
XIE Ying-chao1,2, WANG Rui-feng1,2, CAO Yuan1,2, LIU Kun1*, GAO Xiao-ming1,2. Research on Detecting CO2 With Off-Beam Quartz-Enhanced Photoacoustic Spectroscopy at 2.004 μm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(09): 2664-2669. |
[8] |
LI Jin-yi1, FAN Hong-qing1, TIAN Xin-li1, LI Hong-lian2, WU Zhi-chao1, SONG Li-mei1. Pressure Correction for Calibration-Free Measurement of Wavelength Modulation Spectroscopy in Atmospheric Environment[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(05): 1407-1412. |
[9] |
XIAO Hu-ying1, YANG Fan1, XIANG Liu1, HU Xue-jiao2*. Jet Vacuum Enhanced Tunable Diode Laser Absorption Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(10): 2993-2997. |
[10] |
MEI Jiao-xu, WANG Lei*, TAN Tu, LIU Kun, WANG Gui-shi, GAO Xiao-ming. A New Method of DFB Laser Frequency Stabilization Based on the Characteristics of the Second Harmonic[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(10): 2989-2992. |
[11] |
SHAO Xin, TANG Hai-mei, WANG Feng, LI Yun-long, TAN Pan-long. Research on Closed Indoor Oxygen Concentration of Quasi-Continuous Laser Modulation Absorption Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(12): 3713-3717. |
[12] |
LI Zheng-hui1,3, YAO Shun-chun1,3*, LU Wei-ye2, ZHU Xiao-rui1,3, ZOU Li-chang1,3, LI Yue-sheng2, LU Zhi-min1,3. Study on Temperature Correction Method of CO2 Measurement by TDLAS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2048-2053. |
[13] |
XIAO Bo-cheng1, LIU Jun-yan2*. Experimental Study on Sensitivity of In-Vitro Caries Detection with Thermophotonic Lock-in Imaging (TPLI)[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(03): 933-940. |
[14] |
ZHU Gao-feng1, 2, HU Xin1, ZHU Hong-qiu1*, HU En-ze1, ZHU Jian-ping3. The Multi-Beam Interference Suppression for Measuring Penicillin Vial’s Oxygen Concentration Based on Tunable Diode Laser Absorption Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 372-376. |
[15] |
ZHU Gao-feng1,2, YANG Chun-hua1, ZHU Hong-qiu1*, GUI Wei-hua1. Oxygen Concentration Detection and Calibration Method Improvement in Pharmaceutical Vial Based on Wavelength Modulation Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(10): 3133-3137. |
|
|
|
|