1. State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050, China 2. School of Science, Lanzhou University of Technology, Lanzhou 730050, China
Abstract Diluted magnetic semiconductors Zn1-xFexO nanoparticles with different content (x=0, 0.01, 0.05, 0.10 and 0.20) were successfully synthesized via hydrothermal method. The X-ray diffraction (XRD) shows that the samples are wurtzite structure and metallic Fe or other secondary phases were not found in the samples. The transmission electron microscopy (TEM) shows that the morphology is nanoparticles with good dispersion, and the lattice is clearly visible. Raman scattering spectrum (Raman spectra) shows that E2(High) mode broadened, shifted towards the high-frequencies side and decreased the peak intensity. Photoluminescence spectra (PL) shows that the peaks moved to lower energy and the photoluminescence intensity was quenched with increasing Fe doping concentration. The ultraviolet-visible spectrophotometry (UV-Vis) indicates that the optical band gap decreased and red shift occured. All the results indicate that Fe3+ ions successfully substituted for Zn2+ and were incorporated into the crystal lattice of ZnO.
Key words:Dilute magnetic semiconductors;ZnO;Doping;Optical properties
WU Xiao-juan,WEI Zhi-qiang,WU Yong-fu, et al. Spectroscopic Study of Dilute Magnetic Semiconductors Zn1-xFexO Nanoparticles[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33(08): 2035-2038.
[1] Jaroslav F, Alex M A, Christian E, et al. Acta Physica Slovaca. Reviews and Tutorials, 2007, 57(4-5): 565. [2] Kioseoglou G, Petrou A. Journal of Low Temperature Physics, 2012, 169: 324. [3] Allwood D A, Xiong G, Faulkner C C, et al. Science, 2005, 309 (5741): 1688. [4] Holub M, Bhattacharya P. Journal of Physics D: Applied Physics, 2007, 40: R179. [5] Stolichnov I, Riester S W E, Trodahl H J, et al. Nature Materials, 2008, 7: 464. [6] Bilecka I, Luo L, Djerdj I, et al. The Journal of Chemical Physics C, 2011, 115: 1484. [7] Cheng Ch W, Xu G Y, Zhang H Q, et al. Materials Letters, 2008, 62: 1617. [8] Arguello C A, Rousseau D L, Porto S P S. Physics Review, 1969, 181(3): 1351. [9] Chang Y Q, Wang P W, Tang R H, et al. Journal of Materials Science and Technology, 2011, 27(6): 513. [10] Zhang Y Z, Xie E Q. Applied Physics A, 2010, 99: 955. [11] Decremps F, Porres J P, Saitta A M, et al. Physical Review B, 2002, 65(9): 092101. [12] Yang L, Tang Y H, Hua A P, et al. Physica B, 2008, 403: 2230. [13] Zhang B, Zhou S M, Wang H W, et al. Chinese Science Bulletin, 2008, 53(11): 1639. [14] Vanheusden K, Warren W L, Seager C H, et al. Journal of Applied Physics, 1996, 79: 7983. [15] Westver T, Jones R, Huang J Y, et al. Nano. Letters, 2008, 9(1): 257. [16] Chen H X, Ding J J, Ma S Y. Superlattices and Microstructures, 2011, 49: 176. [17] WU Zhong-hao, XU Ming, DUAN Wen-qian,et al(吴忠浩, 徐 明, 段文倩,等). Acta Physica Sinica(物理学报), 2012, 61(13): 137502. [18] Limaye M V, Singh S B, Das R, et al. Journal of Solid State Chemistry, 2011, 184: 391. [19] Tauc J, Grigorovici R, Vancu A. Physica Status Solidi, 1966, 15(2): 627.