光谱学与光谱分析 |
|
|
|
|
|
Effect of Flat-Mirror Device on Laser-Induced Plasma Radiation Characteristics |
CHEN Jin-zhong, BAI Jin-ning, CHEN Zhen-yu, CHENG Chen, SUN Jiang, WEI Yan-hong |
College of Physics Science and Technology, Hebei University, Baoding 071002, China |
|
|
Abstract To improve the quality of laser-induced breakdown spectroscopy, flat-mirror device was proposed. The effects of flat-mirror device on the radiation characteristics of laser-induced plasma were studied. The experimental results showed that when the device consisted of three flat-mirrors placed around the plasma, the spectral line intensity of Mg, Fe, Ba, Ti and Al increases by about 116.2%, 96.43%, 90.93%, 102.1% and 98.57% than that without flat-mirror device, and the signal-to-noise raises by around 39.17%, 32.48%, 38.07%, 39.95% and 21.30%,respectively. By measuring the plasma parameters,the mechanism of the radiation enhancement obtained with the device consisting of three flat-mirrors was explained. This method was an effective way to improve the detection capacity of LIBS.
|
Received: 2012-12-11
Accepted: 2013-03-28
|
|
Corresponding Authors:
CHEN Jin-zhong
E-mail: chenjinzhongcn@126.com;jinning235@126.com
|
|
[1] Galmed A H, Kassem A K, Von Bergmann H, et al. Appl. Phys. B, 2011, 102: 197. [2] Gupta G P, Suri B M, Verma A, et al. Alloys Compd., 2011, 509(9): 3740. [3] Dyar M D, Tucker J M, Humphries S, et al. Spectrochim. Acta, Part B, 2011, 66(1): 39. [4] Hamzaoui S, Khleifia R, Jaidane N, et al. Lasers Med. Sci., 2011, 26: 79. [5] Pandhija S, Rai N K, Rai A K, et al. Appl. Phys. B, 2010, 98: 231. [6] Popov A M, Colao F, Fantoni R. J. Anal. At. Spectrom., 2010, 25: 837. [7] Ermalitskaia K F, Voropay Y S, Zajogin A P. Journal of Applied Spectroscopy, 2010, 77(2): 153. [8] Guo L B, Hu W, Zhang B Y, et al. Optics Express, 2011, 19(15): 14067. [9] CHEN Jin-zhong, ZHANG Lin-jing, SUN Jiang,et al(陈金忠,张琳晶,孙 江,等). Chinese Science Bulletin(科学通报),2011, 56(4-5): 299. [10] Shen X K, Sun J, Ling H, et al. Appl. Phys. Lett., 2007, 91: 081501; http://dx.doi.org/10.1063/1.2770772. [11] Guo L B, Zhang Y B, He X N, et al. Optics Express, 2012, 20(2): 1436. [12] Pandhija S, Rai N K, Rai A K, et al. Appl. Phys. B, 2010, 98(1): 231. [13] XIN Ren-xuan(辛仁轩). Plasma Emission Spectral Analysis(等离子体发射光谱分析). Beijing: Chemical Industry Press(北京: 化学工业出版社), 2010. [14] NIST Atomic Spectra Database, http://physics.nist.gov. Kurucz output Atomic Spectral Line database from R.L.Kurucz’s CD-ROM 23.
|
[1] |
YANG Fan1, HAO Liu-cheng1, KE Wei2, LIU Qing1, WANG Jun1, CHEN Min-yuan2, YUAN Huan2*, YANG Ai-jun2, WANG Xiao-hua2, RONG Ming-zhe2. Research on Effect of Laser Incident Angle on Laser-Induced Plasma at Low Pressure[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2740-2746. |
[2] |
LI Chang-ming1, CHEN An-min2*, GAO Xun3*, JIN Ming-xing2. Spatially Resolved Laser-Induced Plasma Spectroscopy Under Different Sample Temperatures[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2032-2036. |
[3] |
PAN Ke-yu1, 2, ZHU Ming-yao1, 2, WANG Yi-meng1, 2, XU Yang1, CHI Ming-bo1, 2*, WU Yi-hui1, 2*. Research on the Influence of Modulation Depth of Phase Sensitive
Detection on Stimulated Raman Signal Intensity and
Signal-to-Noise Ratio[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1068-1074. |
[4] |
WANG Wei, WANG Yong-gang*, WU Zhong-hang, RAO Jun-feng, JIANG Song, LI Zi. Study on Spectral Characteristics of Pulsed Argon Vacuum Dielectric
Barrier Discharge[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 455-459. |
[5] |
LI Ru, YANG Xin, XING Qian-yun, ZHANG Yu. Emission Spectroscopy Study of Remote Ar Plasma[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 394-400. |
[6] |
YANG Kun, CHEN Lei*, CHENG Fan-chong, PEI Huan, LIU Gui-ming, WANG Bao-huai, ZENG Wen. Emission Spectroscopy Diagnosis of Air Gliding Arc Plasma Under
Atmospheric Pressure Condition[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3006-3011. |
[7] |
LEI Bing-ying1, 2, XU Bo-ping1, 2, WANG Yi-shan1, 2, ZHU Xiang-ping1, 2, DUAN Yi-xiang3, ZHAO Wei1, 2, TANG Jie1*. Investigation of the Spectral Characteristics of Laser-Induced Plasma for Non-Flat Samples[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3024-3030. |
[8] |
LIU Ye-kun, HAO Xiao-jian*, YANG Yan-wei, HAO Wen-yuan, SUN Peng, PAN Bao-wu. Quantitative Analysis of Soil Heavy Metal Elements Based on Cavity
Confinement LIBS Combined With Machine Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(08): 2387-2391. |
[9] |
WANG Yue1, 3, 4, CHEN Nan1, 2, 3, 4, WANG Bo-yu1, 5, LIU Tao1, 3, 4*, XIA Yang1, 2, 3, 4*. Fourier Transform Near-Infrared Spectral System Based on Laser-Driven Plasma Light Source[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1666-1673. |
[10] |
YANG Yu-qing1, CAI Jiang-hui1, 2*, YANG Hai-feng1*, ZHAO Xu-jun1, YIN Xiao-na1. LAMOST Unknown Spectral Analysis Based on Influence Space and Data Field[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1186-1191. |
[11] |
HU Li-hong1, ZHANG Jin-tong1, WANG Li-yun2, ZHOU Gang3, WANG Jiang-yong1*, XU Cong-kang1*. Optimization of Working Parameters of Glow Discharge Optical Emission Spectrometry of High Barrier Aluminum Plastic Film[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 954-960. |
[12] |
GONG Zheng1, LIN Jing-jun2*, LIN Xiao-mei3*, HUANG Yu-tao1. Effect of Heating and Cooling on the Characteristic Lines of Al During Melting[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 598-602. |
[13] |
CHEN Xu-dong1, WANG Jing-ge1, 2*, FENG Di1, WEI Jia-wei1, WANG Li-ping1, WANG Hong1. Effect of Laser Focusing on Laser-Induced Plasma Confined by Hemispherical Cavity[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3577-3582. |
[14] |
LIN Xiao-mei1, WANG Xiao-meng1, HUANG Yu-tao1*, LIN Jing-jun2*. PSO-LSSVM Improves the Accuracy of LIBS Quantitative Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3583-3587. |
[15] |
LI Xue, LIN Jing-song, GUO Yi-tong, HUO Wei-gang*, WANG Yu-xin, XIA Yang. Studies on the Electrical and Spectrum Characteristics in Atmospheric Dielectric Barrier Discharge in Helium-Argon Mixture[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3602-3606. |
|
|
|
|