|
|
|
|
|
|
Investigation of the Spectral Characteristics of Laser-Induced Plasma for Non-Flat Samples |
LEI Bing-ying1, 2, XU Bo-ping1, 2, WANG Yi-shan1, 2, ZHU Xiang-ping1, 2, DUAN Yi-xiang3, ZHAO Wei1, 2, TANG Jie1* |
1. State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy Sciences, Xi’an 710119, China
2. School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
3. Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China
|
|
|
Abstract Laser-induced breakdown spectroscopy (LIBS), a fast and real-time tool for elemental analysis, has attracted great attention due to its broad applications in trace detection, geological environment monitoring, and other fields. The sample surface is one of the key environmental factors that affect the generation and characteristics of plasma. In this work, a 1 064 nm-laser beam with a pulse width of 8 ns is used to produce plasma in ambient air and comparatively investigate the emission spectra of a series of natural rock samples under non-flat and flat samples surfaces. Based on the laser-supported detonation wave model, the influence of non-flat sample surface on spectral characteristics of laser-induced plasmais discussed. For time-integrated spectra, the results show that the spectral intensities of the atomic lines of the non-flat sample are reduced by nearly 70% compared to those of the flat sample. This indicates that the negative effect of the non-flat sample surface on the LIBS cannot be ignored. According to the signal intensity of the spectral lines, Fe Ⅰ 404.58 nm and Fe Ⅰ 438.35 nm from limonite sample under different laser energies, the variation of their peak intensities and reduction factor with the change of laser energy were studied under the conditions of flat and non-flat sample surfaces. It is found that the spectral intensity under the condition of the non-flat sample surface is lower than that under the condition of the flat sample surface. It is worth noting that the reduction factor of spectral intensity first decreases gradually with laser energy, reaches the minimum value at 33 mJ, and then increases with the further increase of laser energy. Further observations show that laser-plasma with lower electron density is generated on the non-flat sample surface, and the ratio of the electron density of the non-flat sample to that of the flat sample reaches its minimum at the laser energy of 33 mJ, which is consistent with the changing trend of reduction factor with laser energy. This mainly arises because a thinner energy absorption region in laser-plasma is formed due to the large laser incident angle on the non-flat sample surface, thereby increasing the laser energy threshold corresponding to the plasma shielding. Moreover, it is found that the sample surface and the laser energy have little effect on the plasma temperature.
|
Received: 2021-07-30
Accepted: 2022-02-15
|
|
Corresponding Authors:
TANG Jie
E-mail: tangjie@opt.ac.cn
|
|
[1] Guo L, Zhang D, Sun L, et al. Frontiers of Physics, 2021, 16(2): 22500.
[2] Zhang Y, Sun C, Gao L, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2020, 166: 105802.
[3] Li J, Lei B, Wang J, et al. Communications Physics, 2021, 4: 64.
[4] Li J, Wang J, Lei B, et al. Advanced Science, 2020, 7: 1902616.
[5] YUAN Ru-jun, WAN Xiong, WANG Hong-peng(袁汝俊,万 雄,王泓鹏). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2021, 41(4): 1265.
[6] Xue B, Tian Y, Li N, et al. J. Anal. At. Spectrom., 2020, 35: 2880.
[7] Cui M, Deguchi Y, Wang Z, et al. Plasma Sci. Technol., 2019, 21(3): 034007.
[8] Li X, Wang J, Li H, et al. Applied Physics B, 2019, 125: 236.
[9] Han D, Joe Y J, Ryu J S, et al. Spectrochimica Acta Part B, 2018, 146: 84.
[10] National Institute of Standards and Technology. August 20, 2020. https://www.nist.gov/pml/atomic-spectra-database.
[11] Lei B, Wang J, Li J, et al. Optics Express, 2019, 27(15): 20541.
[12] Lei B, Xu B, Wang J, et al. RSC Advances, 2020, 10: 39553.
[13] Lei B, Wang J, Li J, et al. Jpn. J. Appl. Phys., 2018, 57(10): 106001.
|
[1] |
LIU Jia1, 2, GUO Fei-fei2, YU Lei2, CUI Fei-peng2, ZHAO Ying2, HAN Bing2, SHEN Xue-jing1, 2, WANG Hai-zhou1, 2*. Quantitative Characterization of Components in Neodymium Iron Boron Permanent Magnets by Laser Induced Breakdown Spectroscopy (LIBS)[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 141-147. |
[2] |
YANG Wen-feng1, LIN De-hui1, CAO Yu2, QIAN Zi-ran1, LI Shao-long1, ZHU De-hua2, LI Guo1, ZHANG Sai1. Study on LIBS Online Monitoring of Aircraft Skin Laser Layered Paint Removal Based on PCA-SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3891-3898. |
[3] |
SUN Cheng-yu1, JIAO Long1*, YAN Na-ying1, YAN Chun-hua1, QU Le2, ZHANG Sheng-rui3, MA Ling1. Identification of Salvia Miltiorrhiza From Different Origins by Laser
Induced Breakdown Spectroscopy Combined with Artificial Neural
Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3098-3104. |
[4] |
LIU Shu1, JIN Yue1, 2, SU Piao1, 2, MIN Hong1, AN Ya-rui2, WU Xiao-hong1*. Determination of Calcium, Magnesium, Aluminium and Silicon Content in Iron Ore Using Laser-Induced Breakdown Spectroscopy Assisted by Variable Importance-Back Propagation Artificial Neural Networks[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3132-3142. |
[5] |
LI Chang-ming1, CHEN An-min2*, GAO Xun3*, JIN Ming-xing2. Spatially Resolved Laser-Induced Plasma Spectroscopy Under Different Sample Temperatures[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2032-2036. |
[6] |
ZHAO Yang1, ZHANG Lei2, 3*, CHENG Nian-kai4, YIN Wang-bao2, 3*, HOU Jia-jia5, BAI Cheng-hua1. Research on Space-Time Evolutionary Mechanisms of Species Distribution in Laser Induced Binary Plasma[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2067-2073. |
[7] |
WANG Bin1, 2, ZHENG Shao-feng2, GAN Jiu-lin1, LIU Shu3, LI Wei-cai2, YANG Zhong-min1, SONG Wu-yuan4*. Plastic Reference Material (PRM) Combined With Partial Least Square (PLS) in Laser-Induced Breakdown Spectroscopy (LIBS) in the Field of Quantitative Elemental Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2124-2131. |
[8] |
HU Meng-ying1, 2, ZHANG Peng-peng1, 2, LIU Bin1, 2, DU Xue-miao1, 2, ZHANG Ling-huo1, 2, XU Jin-li1, 2*, BAI Jin-feng1, 2. Determination of Si, Al, Fe, K in Soil by High Pressure Pelletised Sample and Laser-Induced Breakdown Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2174-2180. |
[9] |
WU Shu-jia1, 2, YAO Ming-yin2, 3, ZENG Jian-hui2, HE Liang2, FU Gang-rong2, ZENG Yu-qi2, XUE Long2, 3, LIU Mu-hua2, 3, LI Jing2, 3*. Laser-Induced Breakdown Spectroscopy Detection of Cu Element in Pig Fodder by Combining Cavity-Confinement[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1770-1775. |
[10] |
YUAN Shu, WU Ding*, WU Hua-ce, LIU Jia-min, LÜ Yan, HAI Ran, LI Cong, FENG Chun-lei, DING Hong-bin. Study on the Temporal and Spatial Evolution of Optical Emission From the Laser Induced Multi-Component Plasma of Tungsten Carbide Copper Alloy in Vacuum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1394-1400. |
[11] |
WANG Qiu, LI Bin, HAN Zhao-yang, ZHAN Chao-hui, LIAO Jun, LIU Yan-de*. Research on Anthracnose Grade of Camellia Oleifera Based on the Combined LIBS and Fourier Transform NIR Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1450-1458. |
[12] |
CHAI Shu1, PENG Hai-meng1, WU Wen-dong1, 2*. Acoustic-Based Spectral Correction Method for Laser-Induced Breakdown Spectroscopy in High Temperature Environment[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1401-1407. |
[13] |
NING Qian-qian, YANG Jia-hao, LIU Xiao-lin, HE Yu-han, HUANGFU Zhi-chao, YU Wen-jing, WANG Zhao-hui*. Design and Study of Time-Resolved Femtosecond Laser-Induced
Breakdown Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1083-1087. |
[14] |
DING Kun-yan1, HE Chang-tao2, LIU Zhi-gang2*, XIAO Jing1, FENG Guo-ying1, ZHOU Kai-nan3, XIE Na3, HAN Jing-hua1. Research on Particulate Contamination Induced Laser Damage of Optical Material Based on Integrated Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1234-1241. |
[15] |
SU Yun-peng, HE Chun-jing, LI Ang-ze, XU Ke-mi, QIU Li-rong, CUI Han*. Ore Classification and Recognition Based on Confocal LIBS Combined With Machine Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 692-697. |
|
|
|
|