|
|
|
|
|
|
Structures, Stablity and Spectroscopic Property of Chromium Doped Silicon Clusters |
LIN Lin1, YANG Ju-cai2*, YING Chun1, LI Ji-jun1, ZHAO Er-jun1 |
1. College of Science, Inner Mongolia University of Technology, Huhhot 010051, China
2. School of Energy and Power Engineering, Inner Mongolia University of Technology, Huhhot 010051, China |
|
|
Abstract The structures, stability and spectroscopic property of Chromium doped small silicon clusters CrSin (n=3~9) and their anions are systematically investigated using CCSD(T)/aug-cc-pVTZ-DK//MP2/6-31G(2df, p) and the B3LYP/ aug-cc-pVTZ basis set. The results show that the ground-state structures of neutral CrSin(n=3~9) and their anion are all exohedral structures. According to the calculated dissociation energies, it shows that when n<5, the neutral CrSin are less stable than their anion. And when n≥5, the CrSi5 and CrSi8 of neutral CrSin are more stable than their neighboring clusters; the CrSi4 and CrSi7 of anionic CrSin are less stable than their neighboring clusters. The VDEs of CrSin are predicted to be 2.26 eV for CrSi3, 3.21 eV for CrSi4, 2.72 eV for CrSi5, 3.54 eV for CrSi6, 2.45 eV for CrSi7, 2.71 eV for CrSi8 and 2.95 eV for CrSi9. They are in excellent agreement with experimental data except for CrSi4, the average absolute deviations from experimental data are only 0.073 eV. The AEAs of CrSin are evaluated to be 2.07 eV for CrSi3, 1.95 eV for CrSi4, 2.4 eV for CrSi5, 2.32 eV for CrSi6, 2.38 eV for CrSi7, 2.67 eV for CrSi8, and 2.63 eV for CrSi9. Except for CrSi6, they are in excellent agreement with experimental data. The average absolute deviations from experimental data are only 0.09 eV. Besides, the photoelectron spectra (PES) of ground-state structures of anionic CrSin (n=3~9) are simulated at the PBE1PBE/6-31G(2df, p) level, and compared to the corresponding experiment data, it is concluded that the ground-state structures obtained in this paper are reliable.
|
Received: 2019-04-16
Accepted: 2019-08-29
|
|
Corresponding Authors:
YANG Ju-cai
E-mail: yangjc@imut.edu.cn
|
|
[1] Bai J, Cui L F, Wang J, et al. J. Phys. Chem. A,2006,110:908.
[2] Brown W L, Freeman R R, Raghavachari K, et al. Science, 1987, 235: 860.
[3] Cheshnovsky O, Yang S H, Pettiette C L, et al. Chem. Phys. Lett., 1987, 138: 119.
[4] Maus M, Ganteför G, Eberhardt W. Appl. Phys. A: Mater. Sci. Process.,2000,70:535.
[5] Meloni G, Ferguson M J, Sheehan S M, et al. Chem. Phys. Lett.,2004,399:389.
[6] Beck S M. J. Chem. Phys., 1987, 87: 4233.
[7] Beck S M. J. Chem. Phys., 1989, 90: 6306.
[8] Xu H G, Wu M M, Zhang Z G, et al. J. Chem. Phys., 2012, 136: 104308.
[9] Xu H G, Wu M M, Zhang Z G, et al. Chin. Phys. B, 2011, 20: 043102.
[10] Zheng W J, Nilles J M, Radisic D, et al. J. Chem. Phys., 2005, 122: 071101.
[11] Wang J G, Zhao J J, Ma L, et al. Phys. Lett. A,2007, 367: 335.
[12] Ma L, Zhao J J, Wang J G, et al. Phys. Rev. B, 2006, 73: 125439.
[13] Perez A, Melinon P, Dupuis V, et al. J. Phys. D Appl. Phys., 1997, 30: 709.
[14] Hossain D, Pittman C U, Gwaltney S R. Chem. Phys. Lett., 2008, 451: 93.
[15] Jackson K,Nellermoe B. Chem. Phys. Lett., 1996 254: 249.
[16] Pham L N,Nguyen M T. J. Phys. Chem. A,2016, 120:9401.
[17] Nguyen M T,Tran Q T,Tran V T. J. Mol. Model.,2017, 23:282.
[18] Liu Yuming,Yang J C,Cheng Lin. Inorg. Chem., 2018, 57: 12934.
[19] Kong X Y, Xu H G,Zheng W J. J. Chem. Phys.,2012,137:064307.
[20] Guo L J, Zhao G F, Gu Y Z,et al. Phys. Rev. B, 2008, 77: 195417.
[21] Dhaka K,Bandyopadhyay D. Royal Society of Chemistry,2016, 45:12432.
[22] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09 Revision C. 01. Gaussian, Inc., Wallingford CT, 2010.
[23] Wang J, Liu Y,Li Y C. Phys. Chem. Chem. Phys.,2010,12:11428.
[24] Lin L,Yang J C. J. Mol. Model, 2015, 21: 155. |
[1] |
LIN Hong-jian1, ZHAI Juan1*, LAI Wan-chang1, ZENG Chen-hao1, 2, ZHAO Zi-qi1, SHI Jie1, ZHOU Jin-ge1. Determination of Mn, Co, Ni in Ternary Cathode Materials With
Homologous Correction EDXRF Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3436-3444. |
[2] |
WANG Ke-qing1, 2*, WU Na1, 2, CHENG Xiao-xiang3, ZHANG Ran1, 2, LIU Wei1, 2*. Use of FTIR for the Quantitative Study of Corrosion Products of Iron
Cultural Relics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1846-1853. |
[3] |
YANG Guo-wu1, HOU Yan-xia1, SUN Xiao-fei2, JIA Yun-hai1*, LI Xiao-jia1. Evaluation of Long-Term Stability for Non-Standard Method and
Application in Trace Element Analysis of Pure Nickel by Glow
Discharge Mass Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 867-876. |
[4] |
ZHANG Xue-fei1, DUAN Ning1, 2*, JIANG Lin-hua1, 2*, CHENG Wen2, YU Zhao-sheng3, LI Wei-dong2, ZHU Guang-bin4, XU Yan-li2. Study on Stability and Sensitivity of Deep Ultraviolet Spectrophotometry Detection System[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3802-3810. |
[5] |
ZHU Pan-pan1, 2, NIU Xiao-tao3, WANG Xue3, SI Xin1, 2, XIE Qing-gang3, CHEN Bo3, JIANG Shi-long3, JU Ning1*, ZHANG Shu-wen2*, LÜ Jia-ping2. The Stability of Room Temperature Liquid Cheese Based on Turbiscan Multiple Light Scattering Technique[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(11): 3415-3422. |
[6] |
CHEN Huan-quan1, DONG Zhong-ji2, CHEN Zhen-wei1, ZHOU Jin1, SU Jun-hao1, WANG Hao1, ZHENG Jia-jin1, 3*, YU Ke-han1, 3, WEI Wei1, 3. Study on the High Temperature Annealing Process of Thermal
Regeneration Fiber Bragg Grating[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1934-1938. |
[7] |
GAO Jian-kui1,2, LI Yi-jie3, ZHANG Qin-nan1, LIU Bing-wei1, LIU Jing-bo1, LING Dong-xiong1, LI Run-hua2, WEI Dong-shan1*. Temperature Effects on the Terahertz Spectral Characteristics of PEEK[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3347-3351. |
[8] |
TIAN Zhen-hua1, 2, HE Jing-xuan1, WANG Ying1, DUAN Lian3, LI Cong-hu4. Interaction and Thermal Stability of Oxidized Carboxymethyl Cellulose/Collagen Based on Two-Dimensional Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2782-2788. |
[9] |
ZHAO Yi-kun1, YU Yan-bo1, SHEN Bing-hui2, YANG Yong-qin1, AI Jun-min1, YAN Yan-lu3, KANG Ding-ming1*. Influence Factors in Near-Infrared Spectrum Analysis for the Authenticity Identification of Maize Single-Kernel Varieties[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(07): 2229-2234. |
[10] |
WANG Yu1, LUO Lan1, 2*, GUO Rui1, SUN Chuan-yao1, GAO Ming-yuan1. Cation Substitution-Dependent Phase Transition and Color-Tunable Emission in (Ca1-xBax)2SiO4∶Eu Phosphor Series[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(06): 1895-1901. |
[11] |
CHEN Shi, WU Jing, WANG Chao-nan, FANG Jing-huai*. Preparation of SERS Substrates Based on Polymer Nano-Needle Arrays Modified by Ag Nanoparticles[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(03): 765-769. |
[12] |
ZHU Xiao-feng, CHI Zi-rong, HU Peng-fei, OU Lin, WANG Jing, WANG Guang-cai*. Feasibility Study on LED as Monochromatic Light Source in Quantum Efficiency Instrument[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(11): 3340-3345. |
[13] |
SUN Tao, YANG Chun-hua, ZHU Hong-qiu*, LI Yong-gang, CHEN Jun-ming. A Wavelength Selection Method of UV-Vis Based on Variable Stability and Credibility[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(11): 3438-3445. |
[14] |
ZHAO Hai-xia, WANG Xin-wei*, LI Ru-xue, WANG Deng-kui, FANG Xuan, FANG Dan, WEI Zhi-peng, WANG Xiao-hua. Effect of Passivation Substrates Surface to CsPbBr3 Quantum Dot Films Optical Stability[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(06): 1706-1710. |
[15] |
YANG Rui-chen1, GENG Xiao-pei1, FAN Zhi-dong1*, LI Xu2, MA Lei3, GAO Yong-hui1, FU Ying1, WANG Xin-xin4. The Optical Stability of SiNWs:Tb3+ and the Effects of Si Nanowires on Its Luminescent Properties[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(03): 682-685. |
|
|
|
|