光谱学与光谱分析 |
|
|
|
|
|
Preliminary Investigation on the Formation Mechanism of CCl4-Water-Cetyl Trimethyl Ammonium Bromide (CTAB) Gel |
SUN Yan1, 2, CHEN Jing2, HE An-qi2, HUANG Kun2, 3*, YU Lei2,4, LIU Cui-ge1*, WEI Yong-ju1, ZHAI Yan-jun4, XU Yi-zhuang2*, WU Jin-guang2 |
1. College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050016, China 2. College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China 3. Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China 4. College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China |
|
|
Abstract Gels are gaining extensive interest owing to their versatile applications in fields such as drug delivery, tissue engineering, cosmetics, templated materials and food industry. Surfactants have an ability to self-assemble into a variety of supramolecular aggregate structures and morphologies. Of particular interest in resent years are surfactant-based gels, one special class of materials due to surfactant assemblies resulting in viscoelastic solid-like rheological behaviors. Up to now, there is only limited understanding on the mechanism of gel formation, especially on the interaction among water, organic solvents and surfactant during thegel formation. In this study we prepare a Low-molecule-gel that is composed of cetyl trimethyl ammonium bromide (CTAB), water and carbon tetrachloride. Based on the experimental result of XRD and titration, the authors find that CTAB in gel are more than in saturated CTAB solution but CTAB is not solide in gel. CTAB is not solvented in CCl4. The solubility of CTAB in saturated CTAB solution is limited. So the authors suppose that CTAB is a synergistically solubilized by water and CCl4 in the gel. In addition, both NMR and FTIR spectroscopic results demonstrate that CTAB cations form a quasi-ordered structure in the gel.
|
Received: 2009-12-10
Accepted: 2010-03-20
|
|
Corresponding Authors:
HUANG Kun,LIU Cui-ge,XU Yi-zhuang2
E-mail: hkwn2005@163.com;liucge@163.com;xyz@pku.edu.cn
|
|
[1] Terech P, Weiss R G. Chem. Rev., 1997, 97: 3133. [2] Bieser A M, Tiller J C. J. Phys. Chem. B, 2007, 111: 13180. [3] George M, Weiss R G. Acc. Chem. Res., 2006, 39: 489. [4] Lee K Y, Mooney D J. Chem. Rev., 2001, 101: 1869. [5] Tiller J C. Angew. Chem., Int. Ed. 2003, 42: 3072. [6] Vemula P K, John G. Chem. Commun., 2006,(21): 2218. [7] Hirst A R, Escuder B, Miravet J F, et al. Angew. Chem., Int. Ed., 2008, 47: 8002. [8] Sangeetha N M, Maitra U. Chem. Soc. Rev., 2005, 34: 821. [9] Trickett K, Eastoe J. Adv. Colloid. Interfac. Science, 2008, 144: 66. [10] Limin L, Grace T, Gary M, et al. Langmuir, 2008, 24(17): 9286. [11] WENG Shi-fu(翁诗甫). Fourier Transform Infrared Spectrometry(傅里叶变换红外光谱). Beijing: Chemical Industry Press(北京:化学工业出版社), 2005. [12] Snyder R G, MacPhail R A, Strauss H L. J. Am. Chem. Soc., 1980, 102: 3976.
|
[1] |
CHENG Jia-wei1, 2,LIU Xin-xing1, 2*,ZHANG Juan1, 2. Application of Infrared Spectroscopy in Exploration of Mineral Deposits: A Review[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 15-21. |
[2] |
LI Jie, ZHOU Qu*, JIA Lu-fen, CUI Xiao-sen. Comparative Study on Detection Methods of Furfural in Transformer Oil Based on IR and Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 125-133. |
[3] |
YANG Cheng-en1, 2, LI Meng3, LU Qiu-yu2, WANG Jin-ling4, LI Yu-ting2*, SU Ling1*. Fast Prediction of Flavone and Polysaccharide Contents in
Aronia Melanocarpa by FTIR and ELM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 62-68. |
[4] |
GAO Feng1, 2, XING Ya-ge3, 4, LUO Hua-ping1, 2, ZHANG Yuan-hua3, 4, GUO Ling3, 4*. Nondestructive Identification of Apricot Varieties Based on Visible/Near Infrared Spectroscopy and Chemometrics Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 44-51. |
[5] |
LIU Jia, ZHENG Ya-long, WANG Cheng-bo, YIN Zuo-wei*, PAN Shao-kui. Spectra Characterization of Diaspore-Sapphire From Hotan, Xinjiang[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 176-180. |
[6] |
BAO Hao1, 2,ZHANG Yan1, 2*. Research on Spectral Feature Band Selection Model Based on Improved Harris Hawk Optimization Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 148-157. |
[7] |
GUO Ya-fei1, CAO Qiang1, YE Lei-lei1, ZHANG Cheng-yuan1, KOU Ren-bo1, WANG Jun-mei1, GUO Mei1, 2*. Double Index Sequence Analysis of FTIR and Anti-Inflammatory Spectrum Effect Relationship of Rheum Tanguticum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 188-196. |
[8] |
SUN Wei-ji1, LIU Lang1, 2*, HOU Dong-zhuang3, QIU Hua-fu1, 2, TU Bing-bing4, XIN Jie1. Experimental Study on Physicochemical Properties and Hydration Activity of Modified Magnesium Slag[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3877-3884. |
[9] |
LI Xiao-dian1, TANG Nian1, ZHANG Man-jun1, SUN Dong-wei1, HE Shu-kai2, WANG Xian-zhong2, 3, ZENG Xiao-zhe2*, WANG Xing-hui2, LIU Xi-ya2. Infrared Spectral Characteristics and Mixing Ratio Detection Method of a New Environmentally Friendly Insulating Gas C5-PFK[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3794-3801. |
[10] |
HU Cai-ping1, HE Cheng-yu2, KONG Li-wei3, ZHU You-you3*, WU Bin4, ZHOU Hao-xiang3, SUN Jun2. Identification of Tea Based on Near-Infrared Spectra and Fuzzy Linear Discriminant QR Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3802-3805. |
[11] |
LIU Xin-peng1, SUN Xiang-hong2, QIN Yu-hua1*, ZHANG Min1, GONG Hui-li3. Research on t-SNE Similarity Measurement Method Based on Wasserstein Divergence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3806-3812. |
[12] |
BAI Xue-bing1, 2, SONG Chang-ze1, ZHANG Qian-wei1, DAI Bin-xiu1, JIN Guo-jie1, 2, LIU Wen-zheng1, TAO Yong-sheng1, 2*. Rapid and Nndestructive Dagnosis Mthod for Posphate Dficiency in “Cabernet Sauvignon” Gape Laves by Vis/NIR Sectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3719-3725. |
[13] |
WANG Qi-biao1, HE Yu-kai1, LUO Yu-shi1, WANG Shu-jun1, XIE Bo2, DENG Chao2*, LIU Yong3, TUO Xian-guo3. Study on Analysis Method of Distiller's Grains Acidity Based on
Convolutional Neural Network and Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3726-3731. |
[14] |
DANG Rui, GAO Zi-ang, ZHANG Tong, WANG Jia-xing. Lighting Damage Model of Silk Cultural Relics in Museum Collections Based on Infrared Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3930-3936. |
[15] |
LUO Li, WANG Jing-yi, XU Zhao-jun, NA Bin*. Geographic Origin Discrimination of Wood Using NIR Spectroscopy
Combined With Machine Learning Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3372-3379. |
|
|
|
|