光谱学与光谱分析 |
|
|
|
|
|
Determination of Major Elements in Soil from Cancer Village by X-ray Fluorescence Spectrometry |
WEI Zhen-lin1,LI He2,RUI Yu-kui3* |
1. Key Laboratory for Molecular Biology, Department of Biology, Dezhou University, Dezhou 253023, China 2. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China 3. College of Resources and Environmental Sciences, China Agricultural University, Beijing 100093, China |
|
|
Abstract Many social problems arise from environmental pollution, cancer village is one of the many important problems caused by pollution. The authors selected a typical cancer village where 80-100 people died of cancer in the last five years, but there are only a total of 1 200 people in this village. The authors sampled soils from crops-planted areas and detected the major elements by X-ray fluorescence spectrometry. The results showed that the contents of SiO2, TiO2, Al2O3, Fe2O3, MnO, MgO, CaO, Na2O, K2O and P2O5 in soil of this village were 66.05%, 0.66%, 11.37%, 3.93%, 0.075%, 1.97%, 5.47%, 1.90%, 2.11% and 0.20% respectively; with the precision being ±0.20%, ±0.005%, ±0.10%, ±0.10%, ±0.005%, ±0.05%, ±0.04%, ±0.08%, ±0.02% and ±0.005% respectively, which showed that X-ray fluorescence spectrometry is a good method.
|
Received: 2007-06-28
Accepted: 2007-09-29
|
|
Corresponding Authors:
RUI Yu-kui
E-mail: ruiyukui@163.com
|
|
[1] WANG Shao-fang, LIN Jing-xing, SHI Shi-yun, et al(王绍芳,林景星,史世云,等). Environmental Protection(环境保护),2001,(5):42. [2] TIAN Xiong(田 雄). Forestry Economy(绿色中国), 2004,11:20. [3] HONG Qiao-jun(洪巧俊). Environmental Economy(环境经济), 2005, (3): 58. [4] OU Zheng-tao, CAI Yu-gao, SHEN Chong(偶正涛,蔡玉高,沈 ). Environmental Economy(环境经济),2006,(6):32. [5] LI Li, XU Wei(李 莉, 徐 巍). Journal of Anhui Agriculture Science(安徽农业科学), 2007, 35(10): 2983. [6] SONG Yi, GUO Fen, GU Song-hai(宋 义, 郭 芬, 谷松海). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2007, 27(2): 404. [7] SONG Wu-yuan, ZHENG Jian-guo, XIAO Qian(宋武元, 郑建国, 肖 前). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2006, 26(12): 2350. |
[1] |
XU Tian1, 2, LI Jing1, 2, LIU Zhen-hua1, 2*. Remote Sensing Inversion of Soil Manganese in Nanchuan District, Chongqing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 69-75. |
[2] |
LI Hu1, ZHONG Yun1, 2, FENG Ya-ting1, LIN Zhen1, ZHU Shi-jiang1, 2*. Multi-Vegetation Index Soil Moisture Inversion Model Based on UAV
Remote Sensing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 207-214. |
[3] |
HAN Xue1, 2, LIU Hai1, 2, LIU Jia-wei3, WU Ming-kai1, 2*. Rapid Identification of Inorganic Elements in Understory Soils in
Different Regions of Guizhou Province by X-Ray
Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 225-229. |
[4] |
MENG Shan1, 2, LI Xin-guo1, 2*. Estimation of Surface Soil Organic Carbon Content in Lakeside Oasis Based on Hyperspectral Wavelet Energy Feature Vector[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3853-3861. |
[5] |
LI Qi-chen1, 2, LI Min-zan1, 2*, YANG Wei2, 3, SUN Hong2, 3, ZHANG Yao1, 3. Quantitative Analysis of Water-Soluble Phosphorous Based on Raman
Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3871-3876. |
[6] |
CHENG Hui-zhu1, 2, YANG Wan-qi1, 2, LI Fu-sheng1, 2*, MA Qian1, 2, ZHAO Yan-chun1, 2. Genetic Algorithm Optimized BP Neural Network for Quantitative
Analysis of Soil Heavy Metals in XRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3742-3746. |
[7] |
XIE Peng, WANG Zheng-hai*, XIAO Bei, CAO Hai-ling, HUANG Yi, SU Wen-lin. Hyperspectral Quantitative Inversion of Soil Selenium Content Based on sCARS-PSO-SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3599-3606. |
[8] |
HUANG Zhao-di1, CHEN Zai-liang2, WANG Chen3, TIAN Peng2, ZHANG Hai-liang2, XIE Chao-yong2*, LIU Xue-mei4*. Comparing Different Multivariate Calibration Methods Analyses for Measurement of Soil Properties Using Visible and Short Wave-Near
Infrared Spectroscopy Combined With Machine Learning Algorithms[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3535-3540. |
[9] |
AN Bai-song1, 2, WANG Xue-mei1, 2*, HUANG Xiao-yu1, 2, KAWUQIATI Bai-shan1, 2. Hyperspectral Estimation of Soil Lead Content Based on Random Frog Band Selection Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3302-3309. |
[10] |
WANG Yan1, HUANG Yi1, 2*, YANG Fan1, 2*, WU Zhong-wei2, 3, GUAN Yao4, XUE Fei1. The Origin and Geochemical Characteristics of the Hydrothermal Sediments From the 49.2°E—50.5°E Hydrothermal Fields of the Southwest Indian Ocean Ultra-Slow Spreading Ridge[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2868-2875. |
[11] |
DENG Yun1, 2, NIU Zhao-wen1, 2, FENG Qi-yao1, 2, WANG Yu1, 2*. A Novel Hyperspectral Prediction Model of Organic Matter in Red Soil Based on Improved Temporal Convolutional Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2942-2951. |
[12] |
CAI Hai-hui1, ZHOU Ling2, SHI Zhou3, JI Wen-jun4, LUO De-fang1, PENG Jie1, FENG Chun-hui5*. Hyperspectral Inversion of Soil Organic Matter in Jujube Orchard
in Southern Xinjiang Using CARS-BPNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2568-2573. |
[13] |
XIA Chen-zhen1, 2, 3, JIANG Yan-yan4, ZHANG Xing-yu1, 2, 3, SHA Ye5, CUI Shuai1, 2, 3, MI Guo-hua5, GAO Qiang1, 2, 3, ZHANG Yue1, 2, 3*. Estimation of Soil Organic Matter in Maize Field of Black Soil Area Based on UAV Hyperspectral Image[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2617-2626. |
[14] |
ZHANG Zi-hao1, GUO Fei3, 4, WU Kun-ze1, YANG Xin-yu2, XU Zhen1*. Performance Evaluation of the Deep Forest 2021 (DF21) Model in
Retrieving Soil Cadmium Concentration Using Hyperspectral Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2638-2643. |
[15] |
HU Meng-ying1, 2, ZHANG Peng-peng1, 2, LIU Bin1, 2, DU Xue-miao1, 2, ZHANG Ling-huo1, 2, XU Jin-li1, 2*, BAI Jin-feng1, 2. Determination of Si, Al, Fe, K in Soil by High Pressure Pelletised Sample and Laser-Induced Breakdown Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2174-2180. |
|
|
|
|