|
|
|
|
|
|
Representation of Functional Group and Thermal Variation Behavior of Jet in Fushun Liaoning |
XING Ying-ying1, 2 |
1. Faculty of Materials Science and Chemistry,China University of Geosciences, Wuhan 430074,China
2. Gemmologocal Institute, Guangzhou College of South China University of Technology, Guangzhou 510800, China |
|
|
Abstract All samples tested are extracted from West Open-pit Coal Mine of Fushun(WOPCM), Liaoning. With FTIR with reflection testing method and varied temperature, representation of functional group and thermal variation behavior of jet are analyzed. The result shows that: representation of FTIR and ATR-FTIR of Fushun jet concentrates mainly cover two areas: 2 900~2 800 and 1 600~1 200 cm-1; the absorption spectrum band of jet caused with stretching vibration ofν(CH2) becomes lower and lower along with the temperature rise in the process of low-temperature oxidation while the absorption spectrum band caused by stretching vibration ofν(CO) becomes higher and higher. Due to oxidation in the process of petrifaction, alkane in jet becomes less and less while the oxygen-containing functional group keeps on increasing, thus, the formation environment of jet consists anaerobic reduction environment.
|
Received: 2015-10-11
Accepted: 2016-05-29
|
|
|
[1] ZHOU Pei-ling, YANG Zhong-yao(周佩玲, 杨忠耀). Organic Gemological(有机宝石学). Beijing: China University of Geosciences Press(北京:中国地质大学出版社), 2004. 159.
[2] HAN De-xin(韩德馨). China Coal Petrology(中国煤岩学). Beijing: China Mining University Press(北京:中国矿业大学出版社), 1996. 27.
[3] XING Ying-ying, ZHU Li(邢莹莹, 朱 莉). Journal of Gems and Gemmology(宝石和宝石学杂志), 2007, 9(4):21.
[4] XING Ying-ying(邢莹莹). Superhard Material Engineering(超硬材料工程), 2009, 21(5):55.
[5] Bechtel A, Gratzer R, Sachsenhofer R F. International Journal of Coal Geology,2001,46:27.
[6] Watts S, Pollard A M. Journal of Archaeological Science, 1999, 26: 923. |
[1] |
LI Shu-jie1, LIU Jie1, DENG Zi-ang1, OU Quan-hong1, SHI You-ming2, LIU Gang1*. Study of Germinated Rice Seeds by FTIR Spectroscopy Combined With Curve Fitting[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1832-1840. |
[2] |
ZHANG Yan-ru1, 2, SHAO Peng-shuai1*. Study on the Effects of Planting Years of Vegetable Greenhouse on the
Cucumber Qualties Using Mid-IR Spectroscopoy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1816-1821. |
[3] |
SHI Wen-qiang1, XU Xiu-ying1*, ZHANG Wei1, ZHANG Ping2, SUN Hai-tian1, 3, HU Jun1. Prediction Model of Soil Moisture Content in Northern Cold Region Based on Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1704-1710. |
[4] |
WANG Xue-pei1, 2, ZHANG Lu-wei1, 2, BAI Xue-bing3, MO Xian-bin1, ZHANG Xiao-shuan1, 2*. Infrared Spectral Characterization of Ultraviolet Ozone Treatment on Substrate Surface for Flexible Electronics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1867-1873. |
[5] |
WANG Yue1, 3, 4, CHEN Nan1, 2, 3, 4, WANG Bo-yu1, 5, LIU Tao1, 3, 4*, XIA Yang1, 2, 3, 4*. Fourier Transform Near-Infrared Spectral System Based on Laser-Driven Plasma Light Source[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1666-1673. |
[6] |
FENG Rui-jie1, CHEN Zheng-guang1, 2*, YI Shu-juan3. Identification of Corn Varieties Based on Bayesian Optimization SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1698-1703. |
[7] |
YU Zhi-rong, HONG Ming-jian*. Near-Infrared Spectral Quantitative Analysis Network Based on Grouped Fully Connection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1735-1740. |
[8] |
XIE Yu-yu1, 2, 3, HOU Xue-ling1, CHEN Zhi-hui2, AISA Haji Akber1, 3*. Density Functional Theory Studies on Structure and Spectra of Salidroside Molecule[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1786-1791. |
[9] |
MENG Fan-jia1, LUO Shi1, WU Yue-feng1, SUN Hong1, LIU Fei2, LI Min-zan1*, HUANG Wei3, LI Mu3. Characteristic Extraction Method and Discriminant Model of Ear Rot of Maize Seed Base on NIR Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1716-1720. |
[10] |
PENG Yan-fang1, WANG Jun1, WU Zhi-sheng2*, LIU Xiao-na3, QIAO Yan-jiang2*. NIR Band Assignment of Tanshinone ⅡA and Cryptotanshinone by
2D-COS Technology and Model Application Tanshinone Extract[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1781-1785. |
[11] |
TIAN Xue1, CHE Qian1, YAN Wei-min1, OU Quan-hong1, SHI You-ming2, LIU Gang1*. Discrimination of Millet Varieties and Producing Areas Based on Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1841-1847. |
[12] |
HU Bin1, 2, FU Hao1, WANG Wen-bin1, ZHANG Bing1, 2, TANG Fan3*, MA Shan-wei1, 2, LU Qiang1, 2*. Research on Deep Sorting Approach Based on Infrared Spectroscopy for High-Value Utilization of Municipal Solid Waste[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1353-1360. |
[13] |
YAN Ling-tong, LI Li, SUN He-yang, XU Qing, FENG Song-lin*. Spectrometric Investigation of Structure Hydroxyl in Traditional Ceramics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1361-1365. |
[14] |
WANG Li-qi1, YAO Jing1, WANG Rui-ying1, CHEN Ying-shu1, LUO Shu-nian2, WANG Wei-ning2, ZHANG Yan-rong1*. Research on Detection of Soybean Meal Quality by NIR Based on
PLS-GRNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1433-1438. |
[15] |
WANG Yan-ru, TANG Hai-jun*, ZHANG Yao. Study on Infrared Spectral Detection of Fuel Contamination in Mobil Jet Oil II Lubricating Oil[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1541-1546. |
|
|
|
|