光谱学与光谱分析 |
|
|
|
|
|
Identification of Coalmine Water Inrush Source with PCA-BP Model Based on Laser-Induced Fluorescence Technology |
WANG Ya1,2, ZHOU Meng-ran1*, YAN Peng-cheng1, HE Chen-yang1, LIU Dong1 |
1. College of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, China 2. School of Computer and Information, Fuyang Teachers College, Fuyang 236037, China |
|
|
Abstract The water inrush should been rapidly and accurately identified during preventing coalmine water inrush. The laser induced fluorescent (LIF) spectrum technology provides a new method to identify water inrush with the characteristics of high sensitivity, quick and accurate monitoring. In order to identify water inrush, this paper introduces the spectrum technology of LIF to obtain water inrush fluorescence spectra data. The spectral preprocessing methods of Savitzky-Golay(SG) and Multiplicative Scatter Correction (MSC) have been used to eliminate noise spectra in collecting process. Principal component analysis (PCA) extracts feature information, for SG reprocessing data, when the number of principal component is 3, the cumulative contribution rate can reach 99.76 percent. This method has largely retained the information of original data. This paper chooses the classification model with 3 layers BP neural network, constructing by different training and testing sets. The classification model with SG preprocessing has achieved accurate identification, however, appeared few false identification for MSC and original data. The result shows that SG preprocessing is better than MSC. Research results show that the classification model with PCA and BP neural network can effectively identify coalmine water inrush, and have the strong self-organizing, self-learning ability.
|
Received: 2016-04-13
Accepted: 2016-08-22
|
|
Corresponding Authors:
ZHOU Meng-ran
E-mail: mrzhou8521@163.com
|
|
[1] Liu Jianmin, Wang Jiren, Liu Yinpeng, et al. Journal of Safety and Environment, 2015, 15(1): 31. [2] Wen Tingxin, Zhang Bo, Shao Liangshan. China Safety Science Journal, 2014, 24(2): 100. [3] Wu Qiang, Cui Fangpeng, Zhao Suqi, et al. Journal of China Coal Society, 2013, 38(4): 561. [4] Deng Qinghai, Chao Jiayuan, Zhang Liping, et al. Hydrogeology and Engineering Geology, 2014, (6): 20. [5] Huang Pinghua, Chen Jiansheng. Journal of China Coal Society, 2011, 36(S1): 131. [6] Xu Xing, Guo Bingbing, Wang Gongzhong. Journal of Safety Science and Technology, 2016, 12(1): 181. [7] Chu Xiaoli, Lu Wanzhen. Spectroscopy and Spectral Analysis, 2014, 34(10): 2596. [8] Nikiforov A, Britun N, Snyders R, et al. Journal of Magnetohydrodynamics and Plasma Research, 2015, 20(4): 389. [9] Zhang Wenlei, Tong Shaoming, Hou Hesheng. Acta Laser Biology Sinica, 2016, 25(1): 41. [10] Wu Qiang, Zhang Suqi, Sun Wenjie, et al. Journal of China Coal Society, 2013, 38(6): 901. [11] Yan Pengcheng, Zhou Mengran, Liu Qimeng, et al. Spectroscopy and Spectral Analysis, 2016, 36(1): 243. [12] Zhang Wen, Chen Jianping, Qin Shengwu, et al. Journal of Jilin University·Earth Science Edition, 2010, 40(2): 368. [13] Yang Renxin, Yang Yan, Yuan Jingjing. Journal of Guangxi Teachers Education University·Natural Science Edition, 2015,(1): 28. [14] Lu Wanzhen, Yuan Hongfu, Chu Xiaoli. Near Infrared Spectrum Instrument. Beijing: Chemical Industry Press,2010. |
[1] |
FENG Rui-jie1, CHEN Zheng-guang1, 2*, YI Shu-juan3. Identification of Corn Varieties Based on Bayesian Optimization SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1698-1703. |
[2] |
MIAO Shu-guang1, SHAO Dan1*, LIU Zhong-yu2, 3, FAN Qiang1, LI Su-wen1, DING En-jie2, 3. Study on Coal-Rock Identification Method Based on Terahertz
Time-Domain Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1755-1760. |
[3] |
TIAN Xue1, CHE Qian1, YAN Wei-min1, OU Quan-hong1, SHI You-ming2, LIU Gang1*. Discrimination of Millet Varieties and Producing Areas Based on Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1841-1847. |
[4] |
WANG Ling-ling1, 2, 3, WANG Bo1, 2, 3, XIONG Feng1, 2, 3, YANG Lu-cun1, 2, LI Jing-jing4, XIAO Yuan-ming1, 2, 3, ZHOU Guo-ying1, 2*. A Comparative Study of Inorganic Elements in Cultivativing Astragalus Membranaceus From Different Habitats[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1407-1412. |
[5] |
YAN Peng-cheng1, 2, ZHANG Chao-yin2*, SUN Quan-sheng2, SHANG Song-hang2, YIN Ni-ni1, ZHANG Xiao-fei2. LIF Technology and ELM Algorithm Power Transformer Fault Diagnosis Research[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1459-1464. |
[6] |
TAN Yang1, WU Xiao-hong2, 3*, WU Bin4, SHEN Yan-jun1, LIU Jin-mao1. Qualitative Analysis of Pesticide Residues on Chinese Cabbage Based on GK Improved Possibilistic C-Means Clustering[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1465-1470. |
[7] |
ZHANG Tian-liang, ZHANG Dong-xing, CUI Tao, YANG Li*, XIE Chun-ji, DU Zhao-hui, ZHONG Xiang-jun. Identification of Early Lodging Resistance of Maize by Hyperspectral Imaging Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1229-1234. |
[8] |
YAO Shan1, ZHANG Xuan-ling1, CAI Yu-xin1, HE Lian-qiong1, LI Jia-tong1, WANG Xiao-long1, LIU Ying1, 2*. Study on Distribution Characteristics of Different Nitrogen and
Phosphorus Fractions by Spectrophotometry in Baiyangdian
Lake and Source Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1306-1312. |
[9] |
CAO Qiu-hong, LIN Hong-mei, ZHOU Wei, LI Zhao-xin, ZHANG Tong-jun, HUANG Hai-qing, LI Xue-min, LI De-hua*. Water Quality Analysis Based on Terahertz Attenuated Total Reflection Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 31-37. |
[10] |
ZHU Li-wei, YAN Jin-xin, HUANG Juan, SHI Tao-xiong, CAI Fang, LI Hong-you, CHEN Qing-fu*, CHEN Qi-jiao*. Rapid Determination of Amino Acids in Golden Tartary Buckwheat Based on Near Infrared Spectroscopy and Artificial Neural Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 49-55. |
[11] |
ZHANG Xin-xin1, LI Shang-ke1, LI Pao1, 2*, SHAN Yang2, JIANG Li-wen1, LIU Xia1. A Nondestructive Identification Method of Producing Regions of Citrus Based on Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3695-3700. |
[12] |
WU Ye-lan1, CHEN Yi-yu1, LIAN Xiao-qin1, LIAO Yu2, GAO Chao1, GUAN Hui-ning1, YU Chong-chong1. Study on the Identification Method of Citrus Leaves Based on Hyperspectral Imaging Technique[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3837-3843. |
[13] |
OUYANG Ai-guo, WAN Qi-ming, LI Xiong, XIONG Zhi-yi, WANG Shun, LIAO Qi-cheng. Research on Rich Borer Detection Methods Based on Hyperspectral Imaging Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3844-3850. |
[14] |
LIN Hong-mei1, CAO Qiu-hong1, ZHANG Tong-jun1, LI Zhao-xin1, HUANG Hai-qing1, LI Xue-min1, WU Bin2, ZHANG Qing-jian3, LÜ Xin-min4, LI De-hua1*. Identification of Nephrite and Imitations Based on Terahertz Time-Domain Spectroscopy and Pattern Recognition[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3352-3356. |
[15] |
ZHANG Wei-fang1, 2, FAN Ke-feng3, LEI Jing-wei1, 2*, JI Liang1, 2. Infrared Fingerprint and Multivariate Statistical Analysis of Rehmannia Glutinosa[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3392-3398. |
|
|
|
|