光谱学与光谱分析 |
|
|
|
|
|
Research on the Matrix Interference on Major and Minor Elements in Soil Samples with ICP-AES |
CAO Lei1, CHEN Wei-wei2, GAO Xiao-li1, LIAO Qi-lin1 |
1. Geological Survey of Jiangsu Province,Nanjing 210018, China 2. East China University of Science and Technology,Shanghai 211171, China |
|
|
Abstract According to the commonly used method of analysis with ICP-AES in geochemistry, to study the influence factors of interference from the analysis results, standard soil substances were selected to be the calibration curve of work, and the same method of digestion with soil samples was used to balance and eliminate the matrix interference. The concentrations of major and minor elements in soil samples were measured; the relative deviation of the results was compared under conditions of soil matrix and non-soil matrix interference; the relations and laws were being analyzed. The relative deviation (RE%) of testing results under non-soil-matrix interference were found floating around zero, the ratios of positive deviation and negative deviation were almost the same. Excluding the factors of spectral interference, the method of matrix matching can effectively eliminate the effects of matrix interference on soil. It was found that the analysis results of major elements, such as Al, Ca, Fe, Mg, P, Ti and Ba, were influenced negatively greatly under the condition of soil matrix interference, The maximum deviation of Mg 279.5 nm was up to -14.49%. The degree of influence ranking showed as Ti, Mg>P, Fe>Ca, Ba>Al. However, there is no obvious effect on other elements, including Na, Cr, Cu, V, Li, Mn, Ni and Sr. Contrary to the original ideas, the matrix interference effected greatly on the results of elements of high content, nevertheless, the effects on minor elements were not significant. As to the comprehensive matrix interference , the large proportion of interference from component self-content appeared of elements of Ca and Mg, because obvious linear correlation was found between component self-content and the relative deviation of the testing results of Ca and Mg. But no linear trend appeared between the self-contents of other elements and the results of matrix interference, indicating that the influence weight from self-content of other elements was very small. It was very important to select the right spectral lines, and remove the factors of interference to determinate the results of measurement. Factors and rules of interference effect has always been the research topic by all of scholars in the research field of ICP spectrum. On the guidance of above research results, the spectral lines will be selected and the accuracy judged reasonably, when soil samples being analyzed by ICP-AES.
|
Received: 2015-01-29
Accepted: 2015-04-05
|
|
Corresponding Authors:
CAO Lei
E-mail: hshjian@163.com
|
|
[1] YIN Ming, LI Jia-xi(尹 明,李家熙). Analysis of Rocks and Minerals(岩石矿物分析). 4th ed(第4版). Beijing: Geological Press(北京:地质出版社) 2011,4:799. [2] QIU Hai-ou, ZHENG Hong-tao, TANG Zhi-yong(邱海鸥,郑洪涛,汤志勇). Chinese Journal of Analysis Laboratory(分析试验室),2014,33(11):1349. [3] Arenas L, Ortega M, García-Martínez M J, et al. Journal of Geochemical Exploration,2011,108(1):21. [4] PANG Jin-shan, HUANG Gang, DENG Ai-hua, et al(庞晋山,黄 刚,邓爱华,等). Physical Testing and Chemical Analysis Part B: Chemical Analysis(理化检验-化学分册),2012,48:671. [5] TAO Yue, GAO Ge(陶 锐,高 舸). Physical Testing and Chemical Analysis Part B: Chemical Analysis(理化检验-化学分册),2005,41:143. [6] HUANG Guang-ming, CAI Yu-man, WANG Bing(黄光明,蔡玉曼,王 冰). Rock and Mineral Analysis,2013, 32(3):431. [7] Martin S, Petr M, Emmanuelle P, et al. Spectrochimica Acta Part B: Atomic Spectroscopy,2001,56(4):443. [8] GE Fei, ZHANG Li-jun, GU Hai-dong, et al(葛 菲,张丽君,顾海东,等). Safety and Environmental Engineering(安全与环境工程),2013,20(6):102. [9] ZHAO Jun-wei, MEI Tan, YAN Guo-qiang(赵君威,梅 坛,鄢国强). Physical Testing and Chemical Analysis Part B:Chemical Analysis(理化检验-化学分册),2013, 3:364. [10] Kolibarska I, Velichkov S, Daskalova N. Spectrochimica Acta Part B: Atomic Spectroscopy,2008,63(5):603. [11] Supharart S, Weerawan W, Juwadee S, et al. Spectrochimica Acta Part B: Atomic Spectroscopy,2011,66(6):476. [12] HU Xuan, LI Yue-ping, SHI Lei(胡 璇,李跃平,石 磊). Metallurgical Analysis(冶金分析),2014, 34(4):17. |
[1] |
SHI Wen-qiang1, XU Xiu-ying1*, ZHANG Wei1, ZHANG Ping2, SUN Hai-tian1, 3, HU Jun1. Prediction Model of Soil Moisture Content in Northern Cold Region Based on Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1704-1710. |
[2] |
JI Rong-hua1, 2, ZHAO Ying-ying2, LI Min-zan2, ZHENG Li-hua2*. Research on Prediction Model of Soil Nitrogen Content Based on
Encoder-CNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1372-1377. |
[3] |
Yumiti Maiming1, WANG Xue-mei1, 2*. Hyperspectral Estimation of Soil Organic Matter Content Based on Continuous Wavelet Transformation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1278-1284. |
[4] |
WANG Wei-hong1, 2*, LUO Xue-gang1, 3, WU Feng-qiang1, 2, LIN Ling1, 2, LI Jun-jie1, 2. Spectral Angles of Plant Leaves as Indicators of Uranium Pollution in Soil[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1313-1317. |
[5] |
ZHAO Rui1, SONG Hai-yan1*, ZHAO Yao2, SU Qin1, LI Wei1, SUN Yi-shu1, CHEN Ying-min1. Research on Anti-Moisture Interference Soil Organic Matter ModelBased on Characteristic Wavelength Integration Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 984-989. |
[6] |
FAN Chun-hui1,2, ZHENG Jin-huan3, WANG Yu-fei3, SU Zhe3, LIN Long-jian3, YANG Chen3. Adsorption of Cadmium on Fe-Mn Nodules Derived From Soil by Spectral Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 616-621. |
[7] |
LIU Tian-shun1, 2, LI Peng-fa1, 2, LI Gui-long1, 2, WU Meng1, LIU Ming1, LIU Kai1, 2, LI Zhong-pei1, 2*. Using Three-Dimensional Excitation-Emission Matrix to Study the Compositions of Dissolved Organic Matter in the Rhizosphere Soil of Continuous Cropping Peanuts With Different Health States[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 634-641. |
[8] |
LUO De-fang1, LIU Wei-yang1*, PENG Jie1, FENG Chun-hui1, JI Wen-jun2, BAI Zi-jin1. Field in Situ Spectral Inversion of Cotton Organic Matter Based on Soil Water Removal Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 222-228. |
[9] |
ZHOU Peng, WANG Wei-chao, YANG Wei*, JI Rong-hua, LI Min-zan. Effect of Soil Particle Size on Prediction of Soil Total Nitrogen Using Discrete Wavelength NIR Spectral Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3682-3687. |
[10] |
LIU Qin-rong1, DU Zi-wei1, LI Jia-zhen1, WANG Yi-shuo1, 3*, GU Xuan2, CUI Xiu-mei2. Analysis and Evaluation of Inorganic Elements in Salvia miltiorrhiza and Rhizosphere Soils From Different Areas[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3618-3624. |
[11] |
YANG Han, CAO Jian-fei*, WANG Zhao-hai*, WU Quan-yuan. Study on Soil Salinity Estimation Method of “Moisture Resistance” Using Visible-Near Infrared Spectroscopy in Coastal Region[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3077-3082. |
[12] |
LUO De-fang1, PENG Jie1*, FENG Chun-hui1, LIU Wei-yang1, JI Wen-jun2, WANG Nan3. Inversion of Soil Organic Matter Fraction in Southern Xinjiang by Visible-Near-Infrared and Mid-Infrared Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3069-3076. |
[13] |
LIU Wei, YU Qiang*, NIU Teng, YANG Lin-zhe, LIU Hong-jun, YAN Fei. Study on the Relationship Between Element As in Soil of Agricultural Land and Leaf Spectral Characteristics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2866-2871. |
[14] |
XU Lu*, WANG Hui, QIU Si-yi, LIAN Jing-wen, WANG Li-juan. Coastal Soil Salinity Estimation Based Digital Images and Color Space Conversion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2409-2414. |
[15] |
MENG Ru2,4, DU Jin-hua1,2*, LIU Yun-hua1,2, LUO Lin-tao1,3, HE Ke1,2, LIU Min-wu1,2, LIU Bo1,3. Exploration of Digestion Method for Determination of Heavy Metal Elements in Soil by ICP-MS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(07): 2122-2128. |
|
|
|
|