光谱学与光谱分析 |
|
|
|
|
|
In-Situ Analysis of Solid Steel Samples with Remote Double-Pulse Laser-Induced Breakdown Spectroscopy System |
XIN Yong1, 2, SUN Lan-xiang1*, YANG Zhi-jia1, LI Yang1, CONG Zhi-bo1, QI Li-feng1, ZHANG Peng1, 2, ZENG Peng1 |
1. Laboratory of Industrial Control Network and System, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China 2. University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract In order to realize real-time, online monitoring of the component of steel and other metal smelting process, we designed a remote double-pulse laser-induced breakdown spectroscopy (LIBS) analysis system which can realize non-contact remote measurement and component analysis for long distance sample. The paper first tests the system on solid standard steel samples, which provides basis for online monitoring the component of molten steel. The experimental results show:laser focal spot is about 1mm in long distance; double-pulse ablation depth is deeper than single pulse’s; the optimum delay of double-pulse is non-consistent in different distances; the enhancement effect of double- pulse in 3.1 m is better than that in 2.1 m,and the maximum enhancement is 5.19 of Ti(Ⅰ) 319.99 nm; the calibration curve of R2 is about 0.99, RSD being less than 5%, RMSE being less than 0.021%, LOD being less than 500 ppm for most elements in 2.1 m, which is better than that in 3.1 m.
|
Received: 2015-05-05
Accepted: 2015-10-12
|
|
Corresponding Authors:
SUN Lan-xiang
E-mail: sunlanxiang@sia.cn
|
|
[1] Vrenegor J, Noll R, Sturm V. Spectrochimica Acta B: Atomic Spectroscopy, 2005, 60(7-8): 1083. [2] Capitelli F, Colao F, Provenzano M R, et al. Geoderma, 2002, 106(1): 45. [3] Gondal M A, Hussain T. Talanta, 2007, 71(1): 73. [4] Cabalin L M, Laserna J J. SpectrochimActa B: Atomic Spectroscopy, 1998, 53(5): 723. [5] Ferioli F, Buckley S G. Combustion and Flame, 2006, 144(3): 435. [6] Yuan Tingbi, Wang Zhe, Li Lizhi, et al. Applied Optics, 2012, 51(7): 22. [7] Feng Yuan, Yang Jiajun, Cui Zhifeng, et al. Applied Optics, 2010, 49(13): C70. [8] Guo Lianbo, Zeng Xiaoyan, Lu Yongfeng, et al. Optics Express, 2011, 19(15): 14067. [9] Lu Yuan, Vassilia Zorba, Zheng Ronger, et al. Journal of Analytical Atomic Spectrometry, 2013, 28: 743. [10] Zhou Weidong, Li Kexue, Shen Qinmei. Optics Express, 2010, 18(3): 2573. [11] Gruber J, Heitz J, Strasser H, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2001, 56(6): 685. [12] Noll R, Bette H, Brysch A, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2001, 56(6): 637. [13] Palanco S, Conesa S, Laserna J. Journal of Analytical Atomic Spectrometry, 2004, 19(4): 462. [14] SUN Lan-xiang, YU Hai-bin, CONG Zhi-bo, et al(孙兰香, 于海斌, 丛智博,等). Chinese Journal of Scientific Instrument(仪器仪表学报), 2011, 32(11): 2602. [15] SUN Lan-xiang, YU Hai-bin, XIN Yong, et al(孙兰香, 于海斌, 辛 勇,等). Chinese Journal of Lasers(中国激光), 2011, 38(9): 0915002. [16] Sturm V, Vrenegor J, Noll R, et al. Journal of Anlytical Atomic Spectrometry, 2004, 19(4): 451. [17] Sorrentino F, Carelli G, Francesconi F, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2009, 64(10): 1068. [18] Gaona I, Lucena P, Moros J, et al. Journal of Analytical Atomic Spectrometry, 2013, 28(6): 810. [19] Maurice S, Wiens R, Saccoccio M, et al. Space Science Reviews, 2012, 170(1-4): 95. [20] Sallé B, Mauchien P, Maurice S. Spectrochimica Acta Part B: Atomic Spectroscopy, 2007, 62(8): 739. [21] Matiaske A, Gornushkin I, Panne U. Anal. Bioanal. Chem., 2012, 402(8): 2597. |
[1] |
LIU Jia1, 2, GUO Fei-fei2, YU Lei2, CUI Fei-peng2, ZHAO Ying2, HAN Bing2, SHEN Xue-jing1, 2, WANG Hai-zhou1, 2*. Quantitative Characterization of Components in Neodymium Iron Boron Permanent Magnets by Laser Induced Breakdown Spectroscopy (LIBS)[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 141-147. |
[2] |
YANG Wen-feng1, LIN De-hui1, CAO Yu2, QIAN Zi-ran1, LI Shao-long1, ZHU De-hua2, LI Guo1, ZHANG Sai1. Study on LIBS Online Monitoring of Aircraft Skin Laser Layered Paint Removal Based on PCA-SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3891-3898. |
[3] |
ZHU Hua-dong1, 2, 3, ZHANG Si-qi1, 2, 3, TANG Chun-jie1, 2, 3. Research and Application of On-Line Analysis of CO2 and H2S in Natural Gas Feed Gas by Laser Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3551-3558. |
[4] |
SUN Cheng-yu1, JIAO Long1*, YAN Na-ying1, YAN Chun-hua1, QU Le2, ZHANG Sheng-rui3, MA Ling1. Identification of Salvia Miltiorrhiza From Different Origins by Laser
Induced Breakdown Spectroscopy Combined with Artificial Neural
Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3098-3104. |
[5] |
LIU Shu1, JIN Yue1, 2, SU Piao1, 2, MIN Hong1, AN Ya-rui2, WU Xiao-hong1*. Determination of Calcium, Magnesium, Aluminium and Silicon Content in Iron Ore Using Laser-Induced Breakdown Spectroscopy Assisted by Variable Importance-Back Propagation Artificial Neural Networks[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3132-3142. |
[6] |
HUANG Chao1, 2, ZHAO Yu-hong1, ZHANG Hong-ming2*, LÜ Bo2, 3, YIN Xiang-hui1, SHEN Yong-cai4, 5, FU Jia2, LI Jian-kang2, 6. Development and Test of On-Line Spectroscopic System Based on Thermostatic Control Using STM32 Single-Chip Microcomputer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2734-2739. |
[7] |
LI Chang-ming1, CHEN An-min2*, GAO Xun3*, JIN Ming-xing2. Spatially Resolved Laser-Induced Plasma Spectroscopy Under Different Sample Temperatures[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2032-2036. |
[8] |
ZHAO Yang1, ZHANG Lei2, 3*, CHENG Nian-kai4, YIN Wang-bao2, 3*, HOU Jia-jia5, BAI Cheng-hua1. Research on Space-Time Evolutionary Mechanisms of Species Distribution in Laser Induced Binary Plasma[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2067-2073. |
[9] |
WANG Bin1, 2, ZHENG Shao-feng2, GAN Jiu-lin1, LIU Shu3, LI Wei-cai2, YANG Zhong-min1, SONG Wu-yuan4*. Plastic Reference Material (PRM) Combined With Partial Least Square (PLS) in Laser-Induced Breakdown Spectroscopy (LIBS) in the Field of Quantitative Elemental Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2124-2131. |
[10] |
LI Wen-xia1, DU Yu-jun2, WANG Yue1, LIU Zheng-dong3*, ZHENG Jia-hui1, DU Wen-qian1, WANG Hua-ping4. Research on On-Line Efficient Near-Infrared Spectral Recognition and Automatic Sorting Technology of Waste Textiles Based on Convolutional Neural Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2139-2145. |
[11] |
HU Meng-ying1, 2, ZHANG Peng-peng1, 2, LIU Bin1, 2, DU Xue-miao1, 2, ZHANG Ling-huo1, 2, XU Jin-li1, 2*, BAI Jin-feng1, 2. Determination of Si, Al, Fe, K in Soil by High Pressure Pelletised Sample and Laser-Induced Breakdown Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2174-2180. |
[12] |
LIU Gang1, LÜ Jia-ming1, NIU Wen-xing1, LI Qi-feng2, ZHANG Ying-hu2, YANG Yun-peng2, MA Xiang-yun2*. Detection of Sulfur Content in Vessel Fuel Based on Hyperspectral
Imaging Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1697-1702. |
[13] |
WU Shu-jia1, 2, YAO Ming-yin2, 3, ZENG Jian-hui2, HE Liang2, FU Gang-rong2, ZENG Yu-qi2, XUE Long2, 3, LIU Mu-hua2, 3, LI Jing2, 3*. Laser-Induced Breakdown Spectroscopy Detection of Cu Element in Pig Fodder by Combining Cavity-Confinement[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1770-1775. |
[14] |
YAN Zhong-wei1, 2, 3, TIAN Xi2, 3, ZHANG Yi-fei2, 3, LI Lian-jie2, 3, LIU San-qing1, 2, 3, HUANG Wen-qian2, 3*. Online Detection of Soluble Solids Content in Different Parts of
Watermelons Based on Full Transmission Near Infrared
Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1800-1808. |
[15] |
YUAN Shu, WU Ding*, WU Hua-ce, LIU Jia-min, LÜ Yan, HAI Ran, LI Cong, FENG Chun-lei, DING Hong-bin. Study on the Temporal and Spatial Evolution of Optical Emission From the Laser Induced Multi-Component Plasma of Tungsten Carbide Copper Alloy in Vacuum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1394-1400. |
|
|
|
|