光谱学与光谱分析 |
|
|
|
|
|
Development of a Laboratory Cement Quality Analysis Apparatus Based on Laser-Induced Breakdown Spectroscopy |
GUO Rui1, ZHANG Lei2, FAN Juan-juan2, ZHANG Xiang-jie3, LI Yi4 |
1. College of Arts and Sciences, Shanxi Agricultural University, Taigu 030801, China 2. Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China 3. Taiyuan Zijing Technologies Company Limited, Taiyuan 030006, China 4. Shanxi Zhongtiao Mountains New Building Materials Company Limited, Linfen 041000, China |
|
|
Abstract A laboratory cement quality analysis apparatus based on laser-induced breakdown spectroscopy (LIBS) has been developed for rapid analysis of cement composition and ratio values. In this paper, the overall structure, the optical system, the sample preparation process, as well as the spectral data analysis methods are introduced. The calibration model is established with internal standard method. A comparison as to the measurement results between LIBS and X-ray fluorescence spectrometry (XRF) has been made and being analyzed. It shows that by using the LIBS apparatus, the mean absolute error of CaO, SiO2, Al2O3, and Fe2O3 in cement raw materials is 0.46%, 0.25%, 0.13%, and 0.05%, respectively, while the mean absolute error of the ratio value such as KH, SM, and IM in cement clinker is 0.02, 0.05, and 0.04, respectively. The generated cement plasmas are verified to be in the local thermal equilibrium (LTE) condition by calculating both the plasma temperature and the electron density.
|
Received: 2015-05-22
Accepted: 2015-09-16
|
|
Corresponding Authors:
GUO Rui
E-mail: 37420454@qq.com
|
|
[1] Aldridge L P, Cement and Concrete Research, 1982, 12: 381. [2] Li Lizhi, Wang Zhe, Yuan Tingbi. J. Anal. Atom. Spectrom., 2011, 26: 2274. [3] Dong Meirong, Lu Jidong, Yao Shunchun. J. Anal. Atom. Spectrom., 2011, 26: 2183. [4] Wang Zhe, Li Lizhi, Logan West. Spectrochim. Acta B, 2012, 68: 58. [5] Wang Zhe, Yuan Tingbi, Hou Zongyu. Front. Phys., 2014, 9(4): 419. [6] Wang Qianqian, Liu Kai, Zhao hua. Front. Phys., 2012, 7(6): 701. [7] Cai Yue, Chu Pochun, Ho S K. Front. Phys., 2012, 7(6): 670. [8] Wang Z H, Yuan T B, Lui S L. Front. Phys., 2012, 7(6): 708. [9] Gondal M A, Dastageer A, Maslehuddin M. Opt. Laser Technol., 2012, 44: 566. [10] Timur A L, Andrey M P, Sergey M Z. Spectrochim. Acta B, 2014, 99: 94. [11] Christoph D G, Eugen W, Reinhard N. Spectrochim. Acta B, 2009, 64: 1135. [12] Mansoori A, Roshanzadeh B, Khalaji M. Opt. Laser Eng., 2011, 49: 318. [13] Zhang Lei, Dong Lei, Dou Haipeng. Appl. Spectrosc., 2008, 62(4): 458. [14] Ko J B, Sdorra W, Niemax K. J. Anal. Chem., 1989, 335(7): 648. [15] Kanicky V, Mermet J M. J. Anal. Chem., 1996, 355(7): 887. [16] Dong Fengzhong, Chen Xinglong, Liang Yunxian. Front. Phys., 2012, 7(6): 679. [17] Zhang Lei, Ma Weiguang, Dong Lei. Appl. Spectrosc., 2011, 65(7): 790. |
[1] |
LIU Jia1, 2, GUO Fei-fei2, YU Lei2, CUI Fei-peng2, ZHAO Ying2, HAN Bing2, SHEN Xue-jing1, 2, WANG Hai-zhou1, 2*. Quantitative Characterization of Components in Neodymium Iron Boron Permanent Magnets by Laser Induced Breakdown Spectroscopy (LIBS)[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 141-147. |
[2] |
YANG Wen-feng1, LIN De-hui1, CAO Yu2, QIAN Zi-ran1, LI Shao-long1, ZHU De-hua2, LI Guo1, ZHANG Sai1. Study on LIBS Online Monitoring of Aircraft Skin Laser Layered Paint Removal Based on PCA-SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3891-3898. |
[3] |
SUN Cheng-yu1, JIAO Long1*, YAN Na-ying1, YAN Chun-hua1, QU Le2, ZHANG Sheng-rui3, MA Ling1. Identification of Salvia Miltiorrhiza From Different Origins by Laser
Induced Breakdown Spectroscopy Combined with Artificial Neural
Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3098-3104. |
[4] |
LIU Shu1, JIN Yue1, 2, SU Piao1, 2, MIN Hong1, AN Ya-rui2, WU Xiao-hong1*. Determination of Calcium, Magnesium, Aluminium and Silicon Content in Iron Ore Using Laser-Induced Breakdown Spectroscopy Assisted by Variable Importance-Back Propagation Artificial Neural Networks[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3132-3142. |
[5] |
LI Chang-ming1, CHEN An-min2*, GAO Xun3*, JIN Ming-xing2. Spatially Resolved Laser-Induced Plasma Spectroscopy Under Different Sample Temperatures[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2032-2036. |
[6] |
ZHAO Yang1, ZHANG Lei2, 3*, CHENG Nian-kai4, YIN Wang-bao2, 3*, HOU Jia-jia5, BAI Cheng-hua1. Research on Space-Time Evolutionary Mechanisms of Species Distribution in Laser Induced Binary Plasma[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2067-2073. |
[7] |
WANG Bin1, 2, ZHENG Shao-feng2, GAN Jiu-lin1, LIU Shu3, LI Wei-cai2, YANG Zhong-min1, SONG Wu-yuan4*. Plastic Reference Material (PRM) Combined With Partial Least Square (PLS) in Laser-Induced Breakdown Spectroscopy (LIBS) in the Field of Quantitative Elemental Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2124-2131. |
[8] |
HU Meng-ying1, 2, ZHANG Peng-peng1, 2, LIU Bin1, 2, DU Xue-miao1, 2, ZHANG Ling-huo1, 2, XU Jin-li1, 2*, BAI Jin-feng1, 2. Determination of Si, Al, Fe, K in Soil by High Pressure Pelletised Sample and Laser-Induced Breakdown Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2174-2180. |
[9] |
WU Shu-jia1, 2, YAO Ming-yin2, 3, ZENG Jian-hui2, HE Liang2, FU Gang-rong2, ZENG Yu-qi2, XUE Long2, 3, LIU Mu-hua2, 3, LI Jing2, 3*. Laser-Induced Breakdown Spectroscopy Detection of Cu Element in Pig Fodder by Combining Cavity-Confinement[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1770-1775. |
[10] |
YUAN Shu, WU Ding*, WU Hua-ce, LIU Jia-min, LÜ Yan, HAI Ran, LI Cong, FENG Chun-lei, DING Hong-bin. Study on the Temporal and Spatial Evolution of Optical Emission From the Laser Induced Multi-Component Plasma of Tungsten Carbide Copper Alloy in Vacuum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1394-1400. |
[11] |
WANG Qiu, LI Bin, HAN Zhao-yang, ZHAN Chao-hui, LIAO Jun, LIU Yan-de*. Research on Anthracnose Grade of Camellia Oleifera Based on the Combined LIBS and Fourier Transform NIR Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1450-1458. |
[12] |
CHAI Shu1, PENG Hai-meng1, WU Wen-dong1, 2*. Acoustic-Based Spectral Correction Method for Laser-Induced Breakdown Spectroscopy in High Temperature Environment[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1401-1407. |
[13] |
NING Qian-qian, YANG Jia-hao, LIU Xiao-lin, HE Yu-han, HUANGFU Zhi-chao, YU Wen-jing, WANG Zhao-hui*. Design and Study of Time-Resolved Femtosecond Laser-Induced
Breakdown Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1083-1087. |
[14] |
DING Kun-yan1, HE Chang-tao2, LIU Zhi-gang2*, XIAO Jing1, FENG Guo-ying1, ZHOU Kai-nan3, XIE Na3, HAN Jing-hua1. Research on Particulate Contamination Induced Laser Damage of Optical Material Based on Integrated Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1234-1241. |
[15] |
SU Yun-peng, HE Chun-jing, LI Ang-ze, XU Ke-mi, QIU Li-rong, CUI Han*. Ore Classification and Recognition Based on Confocal LIBS Combined With Machine Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 692-697. |
|
|
|
|