光谱学与光谱分析 |
|
|
|
|
|
Study on DNA Fourier Infrared Spectroscopy of Three Kinds of Nicotiana Tabacum L. |
QIU Lu1, YANG Hai-yan1, YANG Chun-sheng1, LIU Peng2, FAN Shu-guo1, LIU Ren-ming3, ZHOU Lin-zong4 |
1. Department of Chemistry and Life Science, Chuxiong Normal University, Chuxiong 675000, China 2. Department of Mathematics, Chuxiong Normal University, Chuxiong 675000, China 3. Department of Physics and Electronics Science, Chuxiong Normal University, Chuxiong 675000, China 4. Department of Geography Science, Chuxiong Normal University, Chuxiong 675000, China |
|
|
Abstract The aim is analyzing genetic reLationship and identifying varieties by detecting DNA differences of three kinds of Nicotiana tabacum L. using Fourier infrared spectrum (FTIR). Results show that DNA FTIR of three kinds of Nicotiana tabacum L. is relatively similar. They all have four obvious characteristic peaks. 1 105 cm-1 beLongs to symmetrical stretching vibration of phosphodiester bond,1 250 cm-1 is unsymmetrical stretching vibration of phosphodiester bond, 1 400 cm-1 is contributed to glucosidic bond, and 1 622 cm-1 belongs to C4C5C6 stretching vibration of cytosine. DNA FTIR data was handled by smoothing, standardizing, second derivative, principal component analysis and Hierarchical cluster analysis. The standard model of Hierarchical cluster combined with principal component of the second derivative was set up. The correct rate of identification is 100%. Yunyan 87 and K326 were clustered into one by using the model. The distance coefficient is 0.003, and DNA similarity is 99.7%, Hongda was clustered into one by itself. The correct rate of cluster is 100%. The study provides a reference for Nicotiana tabacum L. variety identification and genetic breeding.
|
Received: 2013-09-16
Accepted: 2014-01-10
|
|
Corresponding Authors:
QIU Lu
E-mail: qiulu@cxtc.edu.cn
|
|
[1] WANG Yan-ting(王彦亭). Chinese Tobacco Science(中国烟草科学),2001, (4): 1. [2] LIANG Jing-xia, QI Jian-min, WU Wei-ren, et al(梁景霞,祁建民,吴为人,等). Acta Tabacaria Sinica(中国烟草学报),2005, 11(4): 33. [3] CHANG Ai-xia, JIA Xing-hua, FENG Quan-fu, et al(常爱霞,贾兴华,冯全福,等). Chinese Tobacco Science(中国烟草科学),2013, 34(1): 1. [4] FAN Xiao-yan(范晓燕). Life Science Research(生命科学研究), 2003, 7(2): 68. [5] WU Jian-hua, LUO Zong-ming, ZHENG Jian-guo, et al(吴建华, 罗宗铭, 郑建国, 等). Journal of Instrumental Analysis(分析测试学报), 2003, 22(3): 75. [6] WANG Xu-ming, WANG Jing-huai, WANG Xu-dong, et al(王绪明,王静怀,王旭东,等). Modern Instruments(现代仪器),2010, 16(4): 8. [7] PAN Xue-feng(潘学峰). Modern Molecular biology Course(现代分子生物学教程). Beijing: Science Press(北京:科学出版社),2009. 31. [8] ZHU Sheng-wei, SHI Zhi-wen, XU Shu-fen, et al(朱生伟,史芝文,徐淑芬,等). The Northeast Agricultural University(东北农业大学学报),1998, 29(3): 275. [9] Komarov V M. Journal of Biological Physics, 1999, 24: 167. [10] Galinal Dovbeshko, Nina Ya Gridina, Elena B Kruglova, et al. Talanta, 2000, 53: 233. [11] Donna R Whelan, Keith R Bambery, Philip Heraud, et al. Nucleic Acids Research, 2011, 39(13): 175. [12] CanhLe-Tien, Roxanne Lafortune, Francois Shareck, et al. Talanta, 2007, 71: 1969. [13] Martina Banyay, Astrid Graslund. J. Mol. Biol., 2002, 324: 667. [14] ZHANG Yan, ZHANG Zhen-hua, YAO Fu-qi, et al(张 燕, 张振华, 姚付启, 等). Agricultural System Science and Integrated Research(农业系统科学与综合研究), 2009, 25(1): 23. [15] GUO Jin-ping, ZHU Hui-li, ZHOU Yi-fei, et al(郭金平,朱慧丽, 周以飞, 等). Chinese Tobacco Science(中国烟草科学), 2009, (30): 15, 24. [16] XIAO Bing-guang, GAO Yu-long, WU Wei-ren(肖炳光, 高玉龙, 吴为人). Molecalar Plant Breeding(分子植物育种), 2011, 9(39): 1297.
|
[1] |
FENG Rui-jie1, CHEN Zheng-guang1, 2*, YI Shu-juan3. Identification of Corn Varieties Based on Bayesian Optimization SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1698-1703. |
[2] |
MIAO Shu-guang1, SHAO Dan1*, LIU Zhong-yu2, 3, FAN Qiang1, LI Su-wen1, DING En-jie2, 3. Study on Coal-Rock Identification Method Based on Terahertz
Time-Domain Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1755-1760. |
[3] |
TIAN Xue1, CHE Qian1, YAN Wei-min1, OU Quan-hong1, SHI You-ming2, LIU Gang1*. Discrimination of Millet Varieties and Producing Areas Based on Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1841-1847. |
[4] |
WANG Ling-ling1, 2, 3, WANG Bo1, 2, 3, XIONG Feng1, 2, 3, YANG Lu-cun1, 2, LI Jing-jing4, XIAO Yuan-ming1, 2, 3, ZHOU Guo-ying1, 2*. A Comparative Study of Inorganic Elements in Cultivativing Astragalus Membranaceus From Different Habitats[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1407-1412. |
[5] |
TAN Yang1, WU Xiao-hong2, 3*, WU Bin4, SHEN Yan-jun1, LIU Jin-mao1. Qualitative Analysis of Pesticide Residues on Chinese Cabbage Based on GK Improved Possibilistic C-Means Clustering[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1465-1470. |
[6] |
ZHANG Tian-liang, ZHANG Dong-xing, CUI Tao, YANG Li*, XIE Chun-ji, DU Zhao-hui, ZHONG Xiang-jun. Identification of Early Lodging Resistance of Maize by Hyperspectral Imaging Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1229-1234. |
[7] |
YAO Shan1, ZHANG Xuan-ling1, CAI Yu-xin1, HE Lian-qiong1, LI Jia-tong1, WANG Xiao-long1, LIU Ying1, 2*. Study on Distribution Characteristics of Different Nitrogen and
Phosphorus Fractions by Spectrophotometry in Baiyangdian
Lake and Source Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1306-1312. |
[8] |
CAO Qiu-hong, LIN Hong-mei, ZHOU Wei, LI Zhao-xin, ZHANG Tong-jun, HUANG Hai-qing, LI Xue-min, LI De-hua*. Water Quality Analysis Based on Terahertz Attenuated Total Reflection Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 31-37. |
[9] |
ZHANG Xin-xin1, LI Shang-ke1, LI Pao1, 2*, SHAN Yang2, JIANG Li-wen1, LIU Xia1. A Nondestructive Identification Method of Producing Regions of Citrus Based on Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3695-3700. |
[10] |
WU Ye-lan1, CHEN Yi-yu1, LIAN Xiao-qin1, LIAO Yu2, GAO Chao1, GUAN Hui-ning1, YU Chong-chong1. Study on the Identification Method of Citrus Leaves Based on Hyperspectral Imaging Technique[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3837-3843. |
[11] |
OUYANG Ai-guo, WAN Qi-ming, LI Xiong, XIONG Zhi-yi, WANG Shun, LIAO Qi-cheng. Research on Rich Borer Detection Methods Based on Hyperspectral Imaging Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3844-3850. |
[12] |
KONG De-ming1, CHEN Hong-jie1, CHEN Xiao-yu2*, DONG Rui1, WANG Shu-tao1. Research on Oil Identification Method Based on Three-Dimensional Fluorescence Spectroscopy Combined With Sparse Principal Component Analysis and Support Vector Machine[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3474-3479. |
[13] |
LIN Hong-mei1, CAO Qiu-hong1, ZHANG Tong-jun1, LI Zhao-xin1, HUANG Hai-qing1, LI Xue-min1, WU Bin2, ZHANG Qing-jian3, LÜ Xin-min4, LI De-hua1*. Identification of Nephrite and Imitations Based on Terahertz Time-Domain Spectroscopy and Pattern Recognition[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3352-3356. |
[14] |
ZHANG Wei-fang1, 2, FAN Ke-feng3, LEI Jing-wei1, 2*, JI Liang1, 2. Infrared Fingerprint and Multivariate Statistical Analysis of Rehmannia Glutinosa[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3392-3398. |
[15] |
MENG Fan, LIU Yang*, WANG Huan, YAN Qi-cai. Research and Implementation of High-Performance Wavemeter Based on Principle Component Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3625-3631. |
|
|
|
|