光谱学与光谱分析 |
|
|
|
|
|
Study of the Raman-AFM System for Simultaneous Measurements of Raman Spectrum and Micro/Nano-Structures |
SHI Bin, ZHANG Hai-jun, WU Lan, ZHANG Dong-xian* |
State Key Laboratory of Modern Optical Instruments, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract This paper proposes a novel technique of Raman-atomic force microscopy (AFM) combining micro region Raman spectroscopy and AFM imaging. An in-situ probe unit which can simultaneously realize the detection of Raman spectrum and the measurement of AFM image was designed, and a related Raman-AFM system was constructed. Using this system, some experiments were carried out to acquire micro region Raman spectra and AFM images of ZnO nano-particle and TiO2 film. The results show that the Raman spectra of both samples are in agreement with theoretical vaues, and the AFM images represent their micro/nano-structures quite well. These researches prove the feasibility of the Raman-AFM technique which has the potential of being widely applied in the fields of Raman spectroscopy and micro/nano-technology.
|
Received: 2011-08-11
Accepted: 2011-11-28
|
|
Corresponding Authors:
ZHANG Dong-xian
E-mail: zhangdx@zju.edu.cn
|
|
[1] Filik Jacob. Spectroscopy Europe, 2005, 17(5): 10. [2] Manish S, Nidih V, Animesh K. Ojha. Vibrational Spectroscopy, 2011, 56(1): 19. [3] Huang Y Y, Beal CM, Cai W W, et al. Biotechnology and Bioengineering, 2009, 99: 1. [4] Binnig G, Quate C F. Physical Review Letters, 1986, 56(5): 930. [5] Wolf J F, Hillner P E, Bilewicz R, et al. Review of Scientific Instruments, 1999, 70(6): 2751. [6] Creely C M, Singh G P, Petrov D. Optics Communications, 2005, 245: 465. [7] Sharma S K, Misra A K, Luecy P G, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2009, 73(3): 468. [8] Garcia-Vidal F J, Pendry J B. Physical Review Letters, 1996, 77(6): 1163. [9] Frost R L, Weier M, Martens W, et al. Mineralogical Magazine, 2005, 69(2): 169. [10] Futamata, Masayuki. Analytical Sciences, 2001, 17: 693. [11] Bizzarri A R, Cannistraro S. Analytical Biochemistry, 2009, 293: 149. [12] Yoon M J. Journal of the Chinese Chemical Society, 2009, 56: 443. [13] Fu X, Zhang D X, Zhang H J. Chinese Optics Letters, 2009, 7(10): 891. [14] Wang X, Zhang D, Zhang H, et al. Nanotechnology, 2011, 22: 305306. [15] Damen T C, Porto S P S, Tell B. Physics Review, 1966, 142: 570. [16] Choi C H, Jung Y M, Kim S B. Vibrational Spectroscopy, 2005, 37: 33. |
[1] |
HAN Bing1, SUN Dan-dan2*, WAN Wei-hao1, WANG Hui3, DONG Cai-chang2, ZHAO Lei3, WANG Hai-zhou3*. Element Segregation of Cast-Rolled 7B05 Aluminum Alloy Based on
Microbeam X-Ray Fluorescence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1413-1419. |
[2] |
SHENG Liang1, YUAN Liang-jing2*, LI Dong-ling2, ZHANG Xiao-fen3, ZHANG Qiao-chu2, YU Lei2, JIA Yun-hai1*. Determination on Complex Inclusions of High-Speed Railway Wheel Using Spark Source Original Position Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1122-1128. |
[3] |
DU Bao-lu, LI Meng, GUO Jin-jia*, ZHANG Zhi-hao, YE Wang-quan, ZHENG Rong-er. The Experimental Research on In-Situ Detection for Dissolved CO2 in
Seawater Based on Tunable Diode Laser Absorption Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1264-1269. |
[4] |
AN Zhen-hua1, ZHAO Dong-yan2, YE Yan1, YANG Rui1*, WANG Yu-bo2, SHAO Jin2, ZHANG Peng2, CHEN Yan-ning2, 3, ZHOU Min2, WANG Wen-he2, WANG Zheng2, HUANG Hai-chao2, WANG Li-cheng3, ZHONG Ming-chen3, ZHEN Yan2, WAN Yong2. A Novel Aging Evaluation Method of Nylon[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 43-48. |
[5] |
SHEN Xue-jing1, 2, GUO Fei-fei2, XU Peng2, CUI Fei-peng2, LI Xiao-peng2, LIU Jia1, 2. Original Position Statistic Distribution Analysis (OPA) and Characterization of Components in Titanium Alloy Welding Sample by Laser Induced Breakdown Spectroscopy (LIBS)[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3869-3875. |
[6] |
PENG Ya1,2, LI Dong-ling2,3*, WAN Wei-hao1,2, ZHOU Qing-qing3,4, CAI Wen-yi1,2, LI Fu-lin1, LIU Qing-bin2,3, WANG Hai-zhou2,3. Analysis of Composition Distribution of New Cast-Forging FGH4096 Alloy Turbine Disk Based on Microbeam X-Ray Fluorescence Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3498-3505. |
[7] |
DAI Yuan1, XIE Ji-zheng1, YUAN Jing1, SHEN Wei1, GUO Hong-da1, SUN Xiao-ping1, WANG Zhi-gang2*. Application of Excitation-Emission Matrix (EEM) Fluorescence Combined With Linear SVM in Organic Pollution Monitoring of Water[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2839-2845. |
[8] |
ZHENG Li-ping1, 2, WANG Li-qin1*, ZHAO Xing1. Research Progress of Microspectral Analysis Technologies in Protecting Pigments of Cultural Relics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2357-2363. |
[9] |
LIU Jia1, SHEN Xue-jing1, 2, ZHANG Guan-zhen3, GUO Fei-fei2, LI Dong-ling1, 2, WANG Hai-zhou1*. Characterization of Original Position Statistical Distribution of Composition in Train Wheel Steel by Laser-Induced Breakdown Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(07): 2269-2274. |
[10] |
REN Jiang-bo1,2, WANG Fen-lian1,2*, HE Gao-wen1, 2, ZHANG Xin3, DENG Xi-guang1,2, YU Hong-xia4. μ-XRF Analysis and Data Mining of Deep-Sea Co-Rich Ferromanganese Nodules in Western Pacific[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(06): 1834-1840. |
[11] |
SHEN Ya-ting, LUO Li-qiang. A Review of the Development of Modern Laboratory X-Ray Fluorescence Element Distribution Imaging and Species Analysis Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(03): 686-695. |
[12] |
SHUAI Qi-lin1, LIU Jun1, SHAO Jin-fa1, JIANG Qi-li1, LI Rong-wu2,3, PAN Qiu-li1,2,3, CHENG Lin1,3*. The Development and Its Applications of a Software Fitting Micro-X-Ray Fluorescence Spectrum Focused by Poly-Capillary Optics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(03): 714-719. |
[13] |
ZHAO Ting1,2,3, CHI Hai-tao1,2,3*, LIU Yi-ren1,2,3, GAO Xia1,2,3, HUANG Zhao1,2,3, ZHANG Mei1,2,3, LI Qin-mei1,2,3. Determination of Elements in Health Food by X-Ray Fluorescence Microanalysis Combined With Inductively Coupled Plasma Mass Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(03): 750-754. |
[14] |
LIU Juan1, LIU Yu-zhu2, CHU Chen-xi3, BU Ling-bing1*, ZHANG Yang4. In Situ Online Detection of Lignite and Soot by Laser-Induced Breakdown Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(03): 954-960. |
[15] |
LI Wen, WANG Li-min*, CHENG Li, CHEN Hai-qi. Sequential Injection-Continuous Spectroscopy Based Multi-Parameter Method for Water Quality Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(02): 612-617. |
|
|
|
|