|
|
|
|
|
|
Chemical Constituents and Spectra Characterization of Gem-Grade
Triplite |
LÜ Yang, PEI Jing-cheng*, GAO Ya-ting, CHEN Bo-yu |
Gemmological Institute,China University of Geosciences (Wuhan),Wuhan 430074,China
|
|
|
Abstract Triplite is a rare mineral,and gem-grade triplite can present a highly saturated reddish orange. In this paper,three samples from Pakistan are selected for systematic research through Electron Microprobe,Raman spectra,Infrared spectra and UV-Vis absorption spectra. The purpose is to obtain their chemical composition and spectral characteristic,analyze the chromogenic ions,and provide important data for their species identification and optimization processing. The chemical formula of average chemical composition is (Mn1.66, Fe0.17, Ca0.15, Mg0.03)Σ2.02P0.99O4.14(F)0.82,which belongs to the Mg-rich and Fe-poor triplite. And it has a similar chemical composition with the gem-grade triplite produced in the Shigar Valley of Pakistan in the literature. Raman spectra and Infrared spectra show that the main vibration group of triplite is PO3-4 group. The main peak of Raman spectra is located at 980 cm-1,which can be used to analyze the substitution relationship between OH- and F. The intensity contrast of the 450 and 427 cm-1 bimodal peaks can reflect the substitution relationship between Mn2+ and Fe2+. The Infrared spectra has absorption peaks in the 400~650 and 900~1 200 cm-1 band,which can reflect the substitution relationship between OH- and F, Mn2+ and Fe2+. Thus,Raman spectra and Infrared spectra can be used to clearly distinguish the isomorphic minerals:triplite,wolfeite and zwieselite. In the UV-Vis absorption spectra,the strong absorption peak centered at 406 nm is caused by the spin-forbidden transition of Mn2+. The weak absorption peak centered at 455 nm is caused by the spin-forbidden transition of Fe2+,and Mn2+ also has a certain effect on this peak. The absorption peak centered at 533 nm is caused by the transition of Mn2+,6A1g(S)→4T1g(G). So the samples show a reddish orange color,which is an idiochromatic mineral. There are common isomorphisms in the triplite group minerals. Raman spectra and Infrared spectra can identify triplite accurately,and EMPA can provide important information for the traceability of its origin.
|
Received: 2021-03-23
Accepted: 2021-05-23
|
|
Corresponding Authors:
PEI Jing-cheng
E-mail: peijc@cug.edu.cn
|
|
[1] Laurs B M, Quinn E P, Simmons W B, et al. Gems and Gemology, 2005, 41(3): 277.
[2] Vignola P, Gatta G D, Frédéric Hatert, et al. Canadian Mineralogist, 2013, 52(2): 235.
[3] Frost R L, Xi Y, López Andrés, et al. Spectroscopy Letters, 2014, 47(3): 214.
[4] Frost R L, Xi Y, Scholz R, et al. Physics and Chemistry of Minerals, 2012, 39(10): 803.
[5] Frost R L, Xi Y, Scholz R, et al. Phosphorus & Sulfur & the Related Elements, 2013, 188(11):1526.
[6] ZHANG Ru-bai(张如柏). Mineralogy and Petrology(矿物岩石), 1995, 15(2): 6.
[7] Laurs B M, Knox K. Gems and Gemology, 2001, 37(4): 278.
|
[1] |
LI Shu-jie1, LIU Jie1, DENG Zi-ang1, OU Quan-hong1, SHI You-ming2, LIU Gang1*. Study of Germinated Rice Seeds by FTIR Spectroscopy Combined With Curve Fitting[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1832-1840. |
[2] |
ZHANG Yan-ru1, 2, SHAO Peng-shuai1*. Study on the Effects of Planting Years of Vegetable Greenhouse on the
Cucumber Qualties Using Mid-IR Spectroscopoy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1816-1821. |
[3] |
HUANG Bin, DU Gong-zhi, HOU Hua-yi*, HUANG Wen-juan, CHEN Xiang-bai*. Raman Spectroscopy Study of Reduced Nicotinamide Adenine Dinucleotide[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1679-1683. |
[4] |
SHI Wen-qiang1, XU Xiu-ying1*, ZHANG Wei1, ZHANG Ping2, SUN Hai-tian1, 3, HU Jun1. Prediction Model of Soil Moisture Content in Northern Cold Region Based on Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1704-1710. |
[5] |
WANG Gan-lin1, LIU Qian1, LI Ding-ming1, YANG Su-liang1*, TIAN Guo-xin1, 2*. Quantitative Analysis of NO-3,SO2-4,ClO-4 With Water as Internal Standard by Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1855-1861. |
[6] |
WANG Xue-pei1, 2, ZHANG Lu-wei1, 2, BAI Xue-bing3, MO Xian-bin1, ZHANG Xiao-shuan1, 2*. Infrared Spectral Characterization of Ultraviolet Ozone Treatment on Substrate Surface for Flexible Electronics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1867-1873. |
[7] |
WANG Yue1, 3, 4, CHEN Nan1, 2, 3, 4, WANG Bo-yu1, 5, LIU Tao1, 3, 4*, XIA Yang1, 2, 3, 4*. Fourier Transform Near-Infrared Spectral System Based on Laser-Driven Plasma Light Source[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1666-1673. |
[8] |
FENG Rui-jie1, CHEN Zheng-guang1, 2*, YI Shu-juan3. Identification of Corn Varieties Based on Bayesian Optimization SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1698-1703. |
[9] |
YU Zhi-rong, HONG Ming-jian*. Near-Infrared Spectral Quantitative Analysis Network Based on Grouped Fully Connection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1735-1740. |
[10] |
XIE Yu-yu1, 2, 3, HOU Xue-ling1, CHEN Zhi-hui2, AISA Haji Akber1, 3*. Density Functional Theory Studies on Structure and Spectra of Salidroside Molecule[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1786-1791. |
[11] |
ZHU Xiang1, 2*, YUAN Chao-sheng1, CHENG Xue-rui1, LI Tao1, ZHOU Song1, ZHANG Xin1, DONG Xing-bang1, LIANG Yong-fu2, WANG Zheng2. Study on Performances of Transmitting Pressure and Measuring Pressure of [C4mim][BF4] by Using Spectroscopic Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1674-1678. |
[12] |
WANG Ming-xuan, WANG Qiao-yun*, PIAN Fei-fei, SHAN Peng, LI Zhi-gang, MA Zhen-he. Quantitative Analysis of Diabetic Blood Raman Spectroscopy Based on XGBoost[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1721-1727. |
[13] |
YOU Gui-mei1, ZHANG Wen-jie1, CAO Zhen-wei2, HAN Xiang-na1*, GUO Hong1. Analysis of Pigments of Colored Paintings From Early Qing-Dynasty Fengxian Dian in the Forbidden City[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1874-1880. |
[14] |
MENG Fan-jia1, LUO Shi1, WU Yue-feng1, SUN Hong1, LIU Fei2, LI Min-zan1*, HUANG Wei3, LI Mu3. Characteristic Extraction Method and Discriminant Model of Ear Rot of Maize Seed Base on NIR Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1716-1720. |
[15] |
PENG Yan-fang1, WANG Jun1, WU Zhi-sheng2*, LIU Xiao-na3, QIAO Yan-jiang2*. NIR Band Assignment of Tanshinone ⅡA and Cryptotanshinone by
2D-COS Technology and Model Application Tanshinone Extract[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1781-1785. |
|
|
|
|