|
|
|
|
|
|
Adsorption Characteristics of Marine Contaminant Polychlorinated Biphenyls Based on Surface-Enhanced Raman Spectroscopy |
SONG Hong-yan, ZHAO Hang, YAN Xia, SHI Xiao-feng, MA Jun* |
Optics & Optoelectronics Laboratory, Ocean University of China, Qingdao 266100, China
|
|
|
Abstract Polychlorinated biphenyls (PCBs) in marine pollution monitoring is widely attention. In this paper, surface-enhanced Raman spectroscopy (SERS) and density functional theory (DFT) methods were used to investigate the Raman spectra differences of four representatives PCBs (PCB15, PCB28, PCB47 and PCB77) and their adsorption properties on gold nanoparticles. The influence of different adsorption characteristics on SERS quantitative detection was also analyzed. Firstly, the Raman spectra and vibration mode contributions of PCBs were calculated and compared with the measured results to assign the Raman peaks. Then, the PCBs-Au adsorption system was constructed and its binding energy and molecular spatial structure changes before and after adsorption were calculated to predict the adsorption characteristics of molecules on the gold substrate. Finally, the gold colloid was used as the SERS enhanced substrate for SERS detection to reflect the influence of adsorption characteristics on quantitative analysis. The results showed that the calculated results agreed with the measured spectra. The common characteristic peaks of PCBs included bridge bond stretching vibration peak (around 1 290 cm-1), ring breathing vibration peak (around 1 000 cm-1), and ring stretching vibration peak (around 1590 cm-1). The difference of substituted position of Cl atom has a significant effect on Raman vibration, which eventually complicate the vibration peaks of the C—Cl bond and C—H bond. The adsorption capacity from high to low was PCB15 (-6.46 kcal·mol-1), PCB28 (-3.01 kcal·mol-1), PCB77 (-1.95 kcal·mol-1) and PCB47 (-0.31 kcal·mol-1), and the number of substituted chlorine and the ortho-substitution of Cl atom decrease the binding energy and the adsorption form of the molecule on the gold substrate. The increase of the number of ortho-substitutions of the bridge bond leads to the increase of steric hindrance, which hinders the adsorption of molecules. The adsorption characteristics affected the SERS quantification. There was a good linear relationship between the SERS peak intensity and concentration. Molecules with strong adsorption ability in a water environment are more likely to reach the saturation state first, and have the lowest detection concentration. The above conclusion laid a theoretical foundation for SERS technology to detect and identify PCBs in the marine environments and for quantitative analysis.
|
Received: 2021-02-21
Accepted: 2021-05-06
|
|
Corresponding Authors:
MA Jun
E-mail: majun@ouc.edu.cn
|
|
[1] WANG Guo-guang, LIU Qiao-ling, FENG Li-juan, et al(王国光,刘巧灵,冯丽娟,等). Scientia Sinica Chimica(中国科学: 化学), 2017, 47(11): 1284.
[2] LIU Xing, SUN He-lin, JIANG Pei-yu, et al(刘 星,孙禾琳,蒋培宇,等). Environmental Chemistry(环境化学), 2020, 39(7): 2029.
[3] Shi X, Liu S, Han X, et al. Appl. Spectrosc., 2015, 69(5): 574.
[4] HAN Si-qin-gao-wa, ZHANG Chen, CHEN Xin-xuan, et al(韩斯琴高娃, 张 晨, 陈薪璇, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2020, 40(7): 2073.
[5] Jency D A, Umadevi M, Sathe G V. J. Raman. Spectrosc., 2015, 46(4): 377.
[6] Rindzevicius T, Barten J, Vorobiev M, et al. Vib. Spectrosc., 2017, 90: 1.
[7] Lee D, Hussain S, Yeo J, et al. Spectrochim. Acta A: Mol. Biomol. Spectrosc., 2021, 247: 119064.
[8] WU Yuan-fei, LI Ming-xue, ZHOU Jian-zhang, et al(吴元菲,李明雪,周剑章,等). Acta. Phys. Chim. Sin.(物理化学学报), 2017, 33(3): 530.
[9] Wang M, Liu P, Wang Y, et al. J. Colloid. Interface. Sci., 2015, 447: 1.
[10] Pan W, Lai Y, Wang R, et al. J. Raman Spectrosc., 2014, 45(1): 54.
[11] Frens G. Nature. Phys. Science, 1973, 241: 20.
[12] CAO Mei-juan, CHEN Wen-kai, LIU Shu-hong, et al(曹梅娟,陈文凯,刘书红,等). Acta Physico-Chimica Sinica(物理化学学报), 2006, 22(1): 11.
[13] Molina L M, López M J, Alonso J A. Chem. Phys. Lett., 2017, 684: 91.
|
[1] |
YU Zhi-rong, HONG Ming-jian*. Near-Infrared Spectral Quantitative Analysis Network Based on Grouped Fully Connection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1735-1740. |
[2] |
XIE Yu-yu1, 2, 3, HOU Xue-ling1, CHEN Zhi-hui2, AISA Haji Akber1, 3*. Density Functional Theory Studies on Structure and Spectra of Salidroside Molecule[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1786-1791. |
[3] |
WANG Yi-ya1, WANG Yi-min1*, GAO Xin-hua2. The Evaluation of Literature and Its Metrological Statistics of X-Ray Fluorescence Spectrometry Analysis in China[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1329-1338. |
[4] |
FU Qiu-yue1, FANG Xiang-lin1, ZHAO Yi2, QIU Xun1, WANG Peng1, LI Shao-xin1*. Research Progress of Pathogenic Bacteria and Their Drug Resistance
Detection Based on Surface Enhanced Raman Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1339-1345. |
[5] |
TAN Yang1, WU Xiao-hong2, 3*, WU Bin4, SHEN Yan-jun1, LIU Jin-mao1. Qualitative Analysis of Pesticide Residues on Chinese Cabbage Based on GK Improved Possibilistic C-Means Clustering[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1465-1470. |
[6] |
TANG Guang-tong1, YAN Hui-bo1, WANG Chao-yang1, LIU Zhi-qiang1, LI Xin1, YAN Xiao-pei1, ZHANG Zhong-nong2, LOU Chun2*. Experimental Investigation on Hydrocarbon Diffusion Flames: Effects of Combustion Atmospheres on Flame Spectrum and Temperature[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1654-1660. |
[7] |
ZHANG Dian-kai1, LI Yan-hong1*, ZI Chang-yu1, ZHANG Yuan-qin1, YANG Rong1, TIAN Guo-cai2, ZHAO Wen-bo1. Molecular Structure and Molecular Simulation of Eshan Lignite[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1293-1298. |
[8] |
FU Ying-ying, ZHANG Ping, ZHENG Da-wei , LIN Tai-feng*, WANG Hui-qin, WU Xi-hao, SONG Jia-chen. Preparation and SERS Performance of Au-Nylon Flexible Membrane Substrate[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 692-698. |
[9] |
ZHOU Jun1, 2, YANG Yang2, YAO Yao2, LI Zi-wen3, WANG Jian3, HOU Chang-jun1*. Application of Mid-Infrared Spectroscopy in the Analysis of Key Indexes of Strong Flavour Chinese Spirits Base Liquor[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 764-768. |
[10] |
LI Xue-ping1, 2, 3, ZENG Qiang1, 2, 3*. Development and Progress of Spectral Analysis in Coal Structure Research[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 350-357. |
[11] |
GAO Le-le1, ZHONG Liang1, DONG Hai-ling1, LAI Yu-qiang5, LI Lian1,3*, ZANG Heng-chang1, 2, 3, 4*. Characterization of Moisture Absorption Process of Stevia and Rapid Determination of Rebaudioside a Content by Using Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 415-422. |
[12] |
HAN Yu1, SONG Shao-zhong2*, ZHANG Jia-huan3, TAN Yong1*, LIU Chun-yu1, ZHOU Yun-quan1, QU Guan-nan1, HAN Yan-li4, ZHANG Jing3, HU Yu3, MENG Wei-shi3, LIU Huan-jun5, ZHANG Yi-xiang1, LI Jia-yi1. Research on Soybean Bacterial Disease Markers Based on Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 459-463. |
[13] |
GONG Ge-lian1, 2, YOU Li-bing3, LI Cong-ying4, FANG Xiao-dong3, SUN Wei-dong4, 5, 6. Advances in Equipment for Deep Ultra-Violet Excimer Laser Ablation Coupled Plasma Mass and Optical Emission Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 555-560. |
[14] |
JIANG Jie1, YU Quan-zhou1, 2, 3*, LIANG Tian-quan1, 2, TANG Qing-xin1, 2, 3, ZHANG Ying-hao1, 3, ZHANG Huai-zhen1, 2, 3. Analysis of Spectral Characteristics of Different Wetland Landscapes Based on EO-1 Hyperion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 524-529. |
[15] |
CHEN Fu-shan1, WANG Gao-min1, WU Yue1, LU Peng2, JI Zhe1, 2*. Advances in the Application of Confocal Raman Spectroscopy in Lignocellulosic Cell Walls Pretreatment[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 15-19. |
|
|
|
|