|
|
|
|
|
|
Research of Method for Inverting Nitrogen Content in Canopy Leaves of Japonica Rice in Northeastern China Based on Hyperspectral Remote Sensing of Unmanned Aerial Vehicle |
FENG Shuai1, XU Tong-yu1, 2 *, YU Feng-hua1, 2, CHEN Chun-ling1, 2, YANG Xue1, WANG Nian-yi1 |
1. College of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang 110161, China
2. Liaoning Agricultural Information Technology Center, Shenyang Agricultural University, Shenyang 110161, China |
|
|
Abstract In order to explore a better hyperspectral inversion model for monitoring nitrogen content in rice canopy leaves by remote sensing, based on rice plot experiments, the canopy height spectral data of rice at different growth stages were obtained. Based on the comprehensive comparison of the first derivative (1-Der), standard normal variable transformation (SNV) and SG smoothing method, a spectral processing method (SNV-FDSGF) combining standard normal variable transformation with SG filtering method of first derivative was proposed. The sensitive bands of different growth stages were screened out by non-information variable - competitive adaptive reweighted sampling method (UVE-CARS). Two sensitive bands of each growth period were randomly combined to construct a difference spectrum index DSI (difference spectral index), a ratio spectral index RSI (ratio vegetation index) and a normalized spectrum index NDSI (normalized defference spectral index) with high correlation with nitrogen content in rice leaves. Among them, the optimal vegetation index and determination coefficient R2 at the tillering, jointing and heading stages were: DSI(R857, R623), 0.704; DSI(R670, R578), 0.786; DSI(R995, R508), 0.754. Using the superior three planting indices in each growth period as inputs, the adaptive differential optimization extreme learning machine (SaDE-ELM), radial basis function (RBF-NN) and particle swarm optimization BP neural network (PSO-BPNN) inversion models were constructed respectively. The results showed that SaDE-ELM had the best modeling effect. Compared with RBF-NN and PSO-BPNN, the stability and prediction ability of the model were significantly improved. The determination coefficient R2 of training set and verification set of each growth phase inversion model was above 0.810 and RMSE was below 0.400, which could provide certain theoretical basis for quantitative prediction of nitrogen content in rice canopy leaves.
|
Received: 2018-05-08
Accepted: 2018-10-30
|
|
Corresponding Authors:
XU Tong-yu
E-mail: yatongmu@163.com
|
|
[1] CHEN Yong-zhe, FU Bo-jie, FENG Xiao-ming(陈永喆, 傅伯杰, 冯晓明). Acta Ecologica Sinica(生态学报), 2017, 37(18): 6240.
[2] QIN Zhan-fei, CHANG Qing-rui, XIE Bao-ni, et al(秦占飞, 常庆瑞, 谢宝妮, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2016, 32(23): 77.
[3] WANG Shu-wen, ZHAO Yue, WANG Li-feng, et al(王树文, 赵 越, 王丽凤, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2016, 32(20): 187.
[4] Tyler J Nigon, David J Mulla, Carl J Rosen, et al. Computers& Electronics in Agriculture, 2015, 112(C): 36.
[5] LI Lan-tao, MA Yi, WEI Quan-quan, et al(李岚涛, 马 驿, 魏全全, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2015, 31(20): 147.
[6] YANG Bao-hua, CHEN Jian-lin, CHEN Lin-hai, et al(杨宝华, 陈建林, 陈林海, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2015, 31(22): 176.
[7] LI Fen-ling, CHANG Qing-rui(李粉玲, 常庆瑞). Transactions of the Chinese Society for Agricultural Machinery(农业机械学报), 2017, 48(7): 174.
[8] Martin L Gnyp, Yuxin Miao,Fei Yuan, et al. Field Crops Research, 2014, 155(155): 42.
[9] Yu F H, Xu T Y, Cao Y L, at al. Int. J. Agric. & Biol. Eng., 2016,9(5): 132.
[10] Wang Wei, Yao Xia, Yao Xinfeng, et al. Field Crops Research, 2012, 129(384): 90.
[11] LI Xu-qing, LIU Xiang-nan, LIU Mei-ling, et al(李旭青, 刘湘南, 刘美玲, 等). Journal of Remote Sensing(遥感学报), 2014, 18(4): 923.
[12] WANG Ren-hong, SONG Xiao-yu, LI Zhen-hai, et al(王仁红, 宋晓宇, 李振海, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2014, 30(19): 191.
[13] Yoshio Inoue, Eiji Sakaiya, Yan Zhu, et al. Remote Sensing of Encironment, 2012, 126(6829): 210. |
[1] |
LI Shu-jie1, LIU Jie1, DENG Zi-ang1, OU Quan-hong1, SHI You-ming2, LIU Gang1*. Study of Germinated Rice Seeds by FTIR Spectroscopy Combined With Curve Fitting[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1832-1840. |
[2] |
ZHANG Jie1, 2, XU Bo1, FENG Hai-kuan1, JING Xia2, WANG Jiao-jiao1, MING Shi-kang1, FU You-qiang3, SONG Xiao-yu1*. Monitoring Nitrogen Nutrition and Grain Protein Content of Rice Based on Ensemble Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1956-1964. |
[3] |
WANG Jin1, 2, CHEN Shu-tao1, 2*, DING Si-cheng1, 2, YAO Xue-wen1, 2, ZHANG Miao-miao1, 2, HU Zheng-hua2. Relationships Between the Leaf Respiration of Soybean and Vegetation
Indexes and Leaf Characteristics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1607-1613. |
[4] |
JING Xia1, ZHANG Jie1, 2, WANG Jiao-jiao2, MING Shi-kang2, FU You-qiang3, FENG Hai-kuan2, SONG Xiao-yu2*. Comparison of Machine Learning Algorithms for Remote Sensing
Monitoring of Rice Yields[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1620-1627. |
[5] |
SUN Hua-sheng1, ZHANG Yuan2*, SHI Yun-fei1, ZHAO Min1. A New Method for Direct Measurement of Land Surface Reflectance With UAV-Based Multispectral Cameras[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1581-1587. |
[6] |
FU Yan-hua1, LIU Jing2*, MAO Ya-chun2, CAO Wang2, HUANG Jia-qi2, ZHAO Zhan-guo3. Experimental Study on Quantitative Inversion Model of Heavy Metals in Soda Saline-Alkali Soil Based on RBF Neural Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1595-1600. |
[7] |
YU Yue, YU Hai-ye, LI Xiao-kai, WANG Hong-jian, LIU Shuang, ZHANG Lei, SUI Yuan-yuan*. Hyperspectral Inversion Model for SPAD of Rice Leaves Based on Optimized Spectral Index[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1092-1097. |
[8] |
JI Tong1, 2, WANG Bo1, 2, YANG Jun-ying1, 2, LI Qiang1, 2, HE Guo-xing1, 2, PAN Dong-rong3, LIU Xiao-ni1, 2*. Spectral Characteristic Analysis and Spectral Identification of Desert Plants in Yanchi, Ningxia[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 678-685. |
[9] |
KONG Yu-ru1, 2, WANG Li-juan1*, FENG Hai-kuan2, XU Yi1, LIANG Liang1, XU Lu1, YANG Xiao-dong2*, ZHANG Qing-qi1. Leaf Area Index Estimation Based on UAV Hyperspectral Band Selection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 933-939. |
[10] |
YU Feng-hua1, 2, ZHAO Dan1, GUO Zhong-hui1, JIN Zhong-yu1, GUO Shuang1, CHEN Chun-ling1, 2*, XU Tong-yu1, 2. Characteristic Analysis and Decomposition of Mixed Pixels From UAV Hyperspectral Images in Rice Tillering Stage[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 947-953. |
[11] |
MAO Ya-chun1, WEN Jian1*, FU Yan-hua2, CAO Wang1, ZHAO Zhan-guo3, DING Rui-bo1. Quantitative Inversion Model Based on the Visible and Near-Infrared Spectrum for Skarn-Type Iron Ore[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 68-73. |
[12] |
DU Meng-meng1, Ali Roshanianfard2, LIU Ying-chao3. Inversion of Wheat Tiller Density Based on Visible-Band Images of Drone[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3828-3836. |
[13] |
OUYANG Ai-guo, WAN Qi-ming, LI Xiong, XIONG Zhi-yi, WANG Shun, LIAO Qi-cheng. Research on Rich Borer Detection Methods Based on Hyperspectral Imaging Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3844-3850. |
[14] |
YANG Li-li, WANG Zhen-peng, WU Cai-cong*. Research on Large-Scale Monitoring of Spider Mite Infestation in Xinjiang Cotton Field Based on Multi-Source Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3949-3956. |
[15] |
JIANG Jing1, 2, ZHAO Zi-wei1, 2, CAI Chang1, 2, ZHANG Jin-song3, CHENG Zhi-qing1, 2*. Hyperspectral Estimation of Tea Leaves Water Content Under the Influence of Dust Retention[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3532-3537. |
|
|
|
|