|
|
|
|
|
|
Wavelength Selection Method of Algal Fluorescence Spectrum Based on Convex Point Extraction From Feature Region |
ZHANG Yong-bin1, ZHU Dan-dan1, CHEN Ying1*, LIU Zhe1, DUAN Wei-liang1, LI Shao-hua2 |
1. Hebei Province Key Laboratory of Test/Measurement Technology and Instrument, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
2. Hebei Sailhero Environmental Protection Hi-tech Co., Ltd., Shijiazhuang 050000, China
|
|
|
Abstract The frequent occurrence of algal bloom seriously affects the Marine environment and human production activities, so it is very important to monitor the phytoplankton in water.3D fluorescence spectroscopy has been widely used in the analysis of algae community composition and the quantitative analysis of algae concentration in water phytoplankton. However, the information redundancy in 3D fluorescence spectrum data has significantly impacted the qualitative and quantitative analysis of algae.In order to solve the problem of spectral information redundancy, a new wavelength selection method of 3D fluorescence spectrum based on the combination of feature region and convex point extraction is proposed.Taking Aureococcus anophagefferens, Chlorella Vulgaris, and Synechococcus elongatus as the research object, the Savitzky-Golay convolution smoothing method was used to preprocess the 3D fluorescence spectrum to solve the problem of spectral noise caused by external factors. The Mahalanobis distance method was used to eliminate the abnormal spectral samples in the 3D fluorescence spectrum data set.The residual concentration method was used to eliminate the abnormal concentration value samples in the 3D fluorescence spectrum data set.Then the reliability of the convex points under different characteristic regions was measured by the root mean square error of cross-validation (RMSECV) of the PLS regression model, and the wavelength variable was selected. In order to verify the effectiveness of the wavelength selection method, the PLS regression model was established for the three algae species, and the determination coefficient (R2) and root mean square error of cross-validation (RMSECV) were used as the evaluation indexes of the model. Compared with the regression model established with the full spectrum data, the wavelength variables of Aureococcus anophagefferens, Chlorella Vulgaris, and Synechococcus elongatus respectively decreased from 1 071 to 77, 75 and 67, and R2 respectively increased by 0.016 4, 0.002 and 0.032 4. RMSECV was respectively reduced by 1.8×105, 2.0×105 and 2.6×105. Compared with the UVE method, the wavelength variables of Aureococcus anophagefferens, Chlorella Vulgaris, and Synechococcus elongatus were respectively reduced by 599, 357 and 317, and R2 was respectively increased by 0.014 5, 0.000 4 and 0.012 3, RMSECV was respectively decreased by 1.6×105, 7.0×104 and 1.6×105. After the selection of wavelength variables by the method of feature region combined with convex point extraction, the redundant information is reduced, and the model’s prediction ability is improved.
|
Received: 2021-08-09
Accepted: 2021-10-22
|
|
Corresponding Authors:
CHEN Ying
E-mail: chenying@ysu.edu.cn
|
|
[1] Nunes S, Latasa M, Delgado M, et al. Deep-Sea Research Part Ⅰ, 2019, 151(5): 103059.
[2] Nankabirwa A, DeCrop W, Vander Meeren T, et al. Ecological Indicators, 2019, 107: 105563.
[3] PU Shu-juan, HE Pei-xiang, ZHANG Yue, et al(蒲淑娟, 贺培翔, 张 悦,等). Petrochemical Industry Application(石油化工应用), 2021, 40(5): 102.
[4] CHEN Yuan-yuan, WANG Zhi-bin, WANG Zhao-ba(陈媛媛, 王志斌, 王召巴). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2017, 37(1): 299.
[5] Zhang Chu, Liu Fei, Kong Wenwen, et al. Sensors, 2015, 15(7): 16576.
[6] XIONG Zhi-xin, MA Pu-fan, LIANG Long, et al(熊智新, 马璞璠, 梁 龙,等). Transactions of China Pulp and Paper(中国造纸学报), 2019, 34(4): 46.
[7] HUA Chen-zhi, ZHAO Ling, SONG Jian-jun(花晨芝, 赵 凌, 宋建军). Journal of Sichuan Normal University(四川师范大学学报), 2019, 42(6): 825.
[8] MAI Shu-kui, YANG Yang, ZHAO Xiao-bo, et al(买书魁, 杨 洋, 赵小波,等). Food Science and Technology(食品科技), 2019, 44(2): 301.
[9] Chang Haitao, Zhu Lianqing, Lou Xiaoping, et al, Sensors, 2016, 16(6): 827.
[10] CHEN Shi-yu, LI Yan, LI Ai-min(陈诗雨, 李 燕, 李爱民). Environmental Science & Technology(环境科学与技术), 2015, 38(5): 64.
[11] ZHANG Xue-mao(张学茂). Journal of Langfang Teachers College(廊坊师范学院学报), 2011, 11(4): 18.
[12] SHI Lu-zhen, ZHANG Jing-chuan, WANG Yan-qun, et al(石鲁珍, 张景川, 王彦群,等). Journal of Chinese Agricultural Mechanization(中国农机化学报), 2016, 37(6): 99.
|
[1] |
PAN Hong-wei, TONG Wen-bin, LEI Hong-jun*, YANG Guang, SHI Li-li. Spectral Analysis of the Effect of Organic Fertilizer Application on the
Evolution of Organic Matter and Nitrogen in Farmaland[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3116-3123. |
[2] |
KUANG En-jun1, 2, 3, CHI Feng-qin1, ZHANG Jiu-ming1, XU Ming-gang2*, Gilles Colinet3, SU Qing-rui1, HAO Xiao-yu1, ZHU Bao-guo4. Analysis of DOC Component Structure of Black Soil Profile With Straw Deeply Bried and Based on Fluorescence Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3243-3248. |
[3] |
ZHANG Jiu-ming1,KUANG En-jun1,CHI Feng-qin1*,LIU Yi-dan4,ZHOU Bao-ku1,XIA Xiao-yu3,WANG Xiao-jun1,SUN Lei1,CHANG Ben-chao1,WEI Dan2. Fluorescence Spectrum Characteristics of DOC in Black Soil Under
Organic Substitution of Chemical Nitrogen Fertilizer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(09): 2919-2923. |
[4] |
YI Jun1, YANG Guang2, PAN Hong-wei2*, ZHAO Li-li1, LEI Hong-jun2, TONG Wen-bin2, SHI Li-li2. PARAFAC and FRI Preferred 3D Fluorescence Extraction Time of
Dissolved Organic Matter[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(08): 2444-2451. |
[5] |
WU Yan-han, CHEN Quan-li*, LI Jun-qi, ZHAO An-di, LI Xuan, BAO Pei-jin. Study on the Spectral Characteristics of Filled Amazonite[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(08): 2499-2505. |
[6] |
ZHANG Yu-yang, CHEN Mei-hua*, YE Shuang, ZHENG Jin-yu. Research of Geographical Origin of Sapphire Based on Three-Dimensional Fluorescence Spectroscopy: A Case Study in Sri Lanka and Laos Sapphires[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1508-1513. |
[7] |
CHENG Jie-hong1, CHEN Zheng-guang1, 2*, YI Shu-juan2. Wavelength Selection Algorithm Based on Minimum Correlation Coefficient for Multivariate Calibration[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 719-725. |
[8] |
YANG Xin1, 2, WU Zhi-hang3, YE Yin1, 2*, CHEN Xiao-fang1, 2, YUAN Zi-ran1, 2, WANG Jing1, 2. Parallel Factor Analysis of Fluorescence Excitation Emission Matrix Spectroscopy of DOM in Waters of Agricultural Watershed of Dianbu River[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 978-983. |
[9] |
WANG Xiang1, 2, YIN Gao-fang1*, ZHAO Nan-jing1, GAN Ting-ting1, YANG Rui-fang1, QIN Zhi-song3, DONG Ming1, 2, CHEN Min1, 2, DING Zhi-chao1, 2, QI Pei-long1, 2, WANG Lu1, 2, MA Ming-jun1, 2, MENG De-shuo1, LIU Jian-guo1. Fast Measurement of Primary Productivity in the Yellow Sea and Bohai Sea Based on Fluorescence Kinetics Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 990-996. |
[10] |
XIE Lin-jiang, HONG Ming-jian*, YU Zhi-rong. A Wavelength Selection Method Combining Direct Orthogonal Signal Correction and Monte Carlo[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 440-445. |
[11] |
SHI Chuan-qi1, 2, LI Yan3, 4, YU Shao-peng1*, HU Bao-zhong1, 2, WANG Hui1, JIN Liang4. Study on the Effect of Foundation Pit Drainage on Water Dissolved Organic Matter in Urban River[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 498-504. |
[12] |
WU Yan-han, CHEN Quan-li*, ZHAO An-di, LI Xuan, BAO Pei-jin. Study on the Gemmological Characteristics of Filled Morganite[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 575-581. |
[13] |
LIU Tian-shun1, 2, LI Peng-fa1, 2, LI Gui-long1, 2, WU Meng1, LIU Ming1, LIU Kai1, 2, LI Zhong-pei1, 2*. Using Three-Dimensional Excitation-Emission Matrix to Study the Compositions of Dissolved Organic Matter in the Rhizosphere Soil of Continuous Cropping Peanuts With Different Health States[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 634-641. |
[14] |
LOU Meng-han1, 2, JIN Hong-mei2, 3, 4*, LIANG Dong2, 3, ZHU Yan-yun2, 3, ZHU Ning2, 3, 4, LI Dan-yang2, 3. Fluorescence Spectra Characteristics of Dissolved Organic Matter in Mesophilic Anaerobic Digestion of Pig and Dairy Manure Slurries[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 141-146. |
[15] |
CHENG Cheng1,2,3, QIAN Yu-ting4, HUANG Zhen-rong4, JIANG Jing4, SHAO Li4, WANG Zhong-xi4, LÜ Wei-ming4, WU Jing1,2,3*. Fluorescence Excitation Emission Matrix Properties of the Effluents From the Wastewater Treatment Plants in Jiangyin City, Jiangsu Province[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3791-3796. |
|
|
|
|