|
|
|
|
|
|
Non-Destructive Identification for Panax Notoginseng Powder of Different Parts Based on Hyperspectral Imaging Technique |
YAO Kun-shan1, SUN Jun1*, CHEN Chen2, XU Min1, CHENG Jie-hong1, ZHOU Xin1 |
1. College of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China
2. College of Economics and Management, Jiangsu University of Science and Technology, Zhenjiang 212100, China
|
|
|
Abstract Panax notoginseng is a traditional Chinese medical herb with high medicinal value. Nowadays, adulteration is common in the Chinese medicine market, and many unscrupulous traders sell rootlet or rhizome powder as the main root powder, which seriously damages the interests of consumers. Therefore, this study aims to rapidly and non-destructively identify Panax notoginseng powder of different parts by applying a hyperspectral imaging techniques combined with multivariate analysis methods. The hyperspectral images of Panax notoginseng rhizome, fibrous root and main root powder were collected by the hyperspectral imaging system in the spectral range of 400~1 000 nm (a total of 300 samples). Savitzky-Golay(SG)smoothing combined with Standard Normalized Variate (SNV) was applied to eliminate the noise in spectral data and reduce the spectral difference caused by scattering. In order to remove the overlapping and redundant information in spectral variables, a Binary Competitive Adaptive Reweighted Sampling (BCARS) algorithm that considers the interaction effect among variables proposed in this paper was used to select the feature wavelengths. At the same time, the Competitive Adaptive Reweighted Sampling (CARS) algorithm was also used. Based on the full spectrum, CARS and BCARS feature wavelengths, Support Vector Machine (SVM) and eXtreme Gradient Boosting (XGBoost) classification models were established, respectively. The results showed that the BCARS-XGBoost model had the best performance, with classification accuracies of 100% and 99.33% for the training and prediction sets, respectively. In addition, fewer feature wavelengths were selected by BCARS, which is conducive to developing a multi-spectral system and portable detector. Therefore, it is feasible to identify Panax notoginseng powder of different parts by applying a hyperspectral imaging technique combined with the BCARS-XGBoost model.
|
Received: 2021-11-29
Accepted: 2022-06-14
|
|
Corresponding Authors:
SUN Jun
E-mail: sun2000jun@sina.com
|
|
[1] Zhou X, Sun J, Tian Y, et al. Food Chemistry, 2020, 321: 126503.
[2] Sun J, Zhou X, Hu Y, et al. Computers and Electronics in Agriculture, 2019, 160: 153.
[3] Yao K, Sun J, Zhou X, et al. Journal of Food Process Engineering, 2020, 43(7): e13422.
[4] Cong S, Sun J, Mao H, et al. Journal of the Science of Food and Agriculture, 2017, 27: 98.
[5] Yang Q, Sun D W, Cheng W W, Journal of Food Engineering, 2017, 192: 53.
[6] Zheng K, Feng T, Zhang W, et al. Chemometrics and Intelligent Laboratory Systems, 2019, 191: 109.
[7] Montomoli J, Romeo L, Moccia S, et al. Journal of Intensive Medicine, 2021, 1(2): 110.
[8] Luo J, Zhang Z, Fu Y, et al. Results in Physics, 2021, 27: 104462.
[9] Ma M, Zhao G, He B, et al. Journal of Hydrology, 2021, 598: 126382.
[10] Liew X Y, Hameed N, Clos J, Machine Learning With Applications, 2021, 6: 100154.
[11] Yao K, Sun J, Tang N, et al. Journal of Food Process Engineering, 2021, 44(7): e13718.
|
[1] |
WANG Cai-ling1,ZHANG Jing1,WANG Hong-wei2*, SONG Xiao-nan1, JI Tong3. A Hyperspectral Image Classification Model Based on Band Clustering and Multi-Scale Structure Feature Fusion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 258-265. |
[2] |
GAO Hong-sheng1, GUO Zhi-qiang1*, ZENG Yun-liu2, DING Gang2, WANG Xiao-yao2, LI Li3. Early Classification and Detection of Kiwifruit Soft Rot Based on
Hyperspectral Image Band Fusion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 241-249. |
[3] |
WU Hu-lin1, DENG Xian-ming1*, ZHANG Tian-cai1, LI Zhong-sheng1, CEN Yi2, WANG Jia-hui1, XIONG Jie1, CHEN Zhi-hua1, LIN Mu-chun1. A Revised Target Detection Algorithm Based on Feature Separation Model of Target and Background for Hyperspectral Imagery[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 283-291. |
[4] |
CHU Bing-quan1, 2, LI Cheng-feng1, DING Li3, GUO Zheng-yan1, WANG Shi-yu1, SUN Wei-jie1, JIN Wei-yi1, HE Yong2*. Nondestructive and Rapid Determination of Carbohydrate and Protein in T. obliquus Based on Hyperspectral Imaging Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3732-3741. |
[5] |
LI Wei1, TAN Feng2*, ZHANG Wei1, GAO Lu-si3, LI Jin-shan4. Application of Improved Random Frog Algorithm in Fast Identification of Soybean Varieties[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3763-3769. |
[6] |
HUANG You-ju1, TIAN Yi-chao2, 3*, ZHANG Qiang2, TAO Jin2, ZHANG Ya-li2, YANG Yong-wei2, LIN Jun-liang2. Estimation of Aboveground Biomass of Mangroves in Maowei Sea of Beibu Gulf Based on ZY-1-02D Satellite Hyperspectral Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3906-3915. |
[7] |
ZHOU Bei-bei1, LI Heng-kai1*, LONG Bei-ping2. Variation Analysis of Spectral Characteristics of Reclaimed Vegetation in an Ionic Rare Earth Mining Area[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3946-3954. |
[8] |
YUAN Wei-dong1, 2, JU Hao2, JIANG Hong-zhe1, 2, LI Xing-peng2, ZHOU Hong-ping1, 2*, SUN Meng-meng1, 2. Classification of Different Maturity Stages of Camellia Oleifera Fruit
Using Hyperspectral Imaging Technique[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3419-3426. |
[9] |
FU Gen-shen1, LÜ Hai-yan1, YAN Li-peng1, HUANG Qing-feng1, CHENG Hai-feng2, WANG Xin-wen3, QIAN Wen-qi1, GAO Xiang4, TANG Xue-hai1*. A C/N Ratio Estimation Model of Camellia Oleifera Leaves Based on
Canopy Hyperspectral Characteristics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3404-3411. |
[10] |
SHEN Ying, WU Pan, HUANG Feng*, GUO Cui-xia. Identification of Species and Concentration Measurement of Microalgae Based on Hyperspectral Imaging[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3629-3636. |
[11] |
XIE Peng, WANG Zheng-hai*, XIAO Bei, CAO Hai-ling, HUANG Yi, SU Wen-lin. Hyperspectral Quantitative Inversion of Soil Selenium Content Based on sCARS-PSO-SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3599-3606. |
[12] |
QIAN Rui1, XU Wei-heng2, 3 , 4*, HUANG Shao-dong2, WANG Lei-guang2, 3, 4, LU Ning2, OU Guang-long1. Tea Plantations Extraction Based on GF-5 Hyperspectral Remote Sensing
Imagery in the Mountainous Area[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3591-3598. |
[13] |
ZHU Zhi-cheng1, WU Yong-feng2*, MA Jun-cheng2, JI Lin2, LIU Bin-hui3*, JIN Hai-liang1*. Response of Winter Wheat Canopy Spectra to Chlorophyll Changes Under Water Stress Based on Unmanned Aerial Vehicle Remote Sensing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3524-3534. |
[14] |
YANG Lei1, 2, 3, ZHOU Jin-song1, 2, 3, JING Juan-juan1, 2, 3, NIE Bo-yang1, 3*. Non-Uniformity Correction Method for Splicing Hyperspectral Imager Based on Overlapping Field of View[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3582-3590. |
[15] |
SUN Lin1, BI Wei-hong1, LIU Tong1, WU Jia-qing1, ZHANG Bao-jun1, FU Guang-wei1, JIN Wa1, WANG Bing2, FU Xing-hu1*. Identification Algorithm of Green Algae Using Airborne Hyperspectral and Machine Learning Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3637-3643. |
|
|
|
|