|
|
|
|
|
|
Gemological and Spectroscopic Identification Characteristics of Frozen Jelly-Filled Turquoise and Its Raw Material |
JIA Yu-ge1, YANG Ming-xing1, 2*, YOU Bo-ya1, YU Ke-ye1 |
1. Gemmological Institute, China University of Geosciences (Wuhan), Wuhan 430074, China
2. Gem Testing Center, China University of Geosciences (Wuhan), Wuhan 430074, China
|
|
|
Abstract The organic filling treatment of turquoise has a long history, and there has been much research on two filling methods: immersion (acrylates) and injection (epoxy resins), while frozen jelly filling (acrylates) is a relatively new filling method with a weak research base. Using conventional gemological methods, FTIR, 3D fluorescence spectrometer and UV-VIS spectrum analysis, combined with the frozen jelly material used for the treatment, this paper presents a systematic comparative analysis of the gemological and spectroscopic characteristics of natural turquoise raw material and its corresponding frozen jelly-filled turquoise. The results showed that the color and density of turquoises were significantly enhanced by the frozen jelly filling, with glue residue and white “pine flower” on the surface; frozen jelly-filled turquoises showed weak-moderate blue fluorescence under the LW UV lamp and weak fluorescence under the SW, with obvious luminescence in the glue residue positions, while raw turquoises were inert under both LW and SW. The IR spectra of the frozen jelly solution showed CO stretching vibration peak [(1 722±5) cm-1], C—O stretching vibration peak [(1 156±5) cm-1], CC stretching vibration peak [(1 637±5) cm-1], benzene ring structure and C—OH absorption peaks, indicating that its composition may be a copolymer of compounds containing benzene ring, carboxylic acid, alcohol and other structures with methacrylate. The infrared spectrum of frozen jelly-filled turquoises showed the organic group vibrational peaks corresponding to the frozen jelly solution, effectively identifying filled turquoises from raw materials. 3D fluorescence spectra showed that raw turquoises did not appear obvious fluorescence centers throughout the excitation wavelength range, frozen jelly-filled turquoises all appeared characteristic fluorescence centers with emission wavelengths around 465, 445 and 410 nm, and excitation wavelengths in the range of 360~400 nm, corresponding to the fluorescence centers of the frozen jelly solution, indicating that the fluorescence was caused by glue, which can be taken as important evidence of frozen jelly filling. The UV-Vis absorption spectra of both raw turquoises and frozen jelly-filled turquoises were consistent with the characteristics of natural turquoises, indicating that no organic dyes were added during the jelly-filling process.
|
Received: 2022-10-12
Accepted: 2023-05-04
|
|
Corresponding Authors:
YANG Ming-xing
E-mail: yangc@cug.edu.cn
|
|
[1] WANG Yi-fan,XING Ying-ying,ZHAO Jun-bo,et al(王亦帆,邢莹莹,赵军博,等). Contemporary Chemical Industry(当代化工),2020,49(6):1047.
[2] DAI Hui,QI Li-jian,JIANG Xiao-ping,et al(戴 慧,亓利剑,蒋小平,等). 2013 Chinese Jewelry Academic Exchange Conference Proceedings(2013中国珠宝首饰学术交流会论文集),2013:182.
[3] CHEN Quan-li,QI Li-jian,ZHANG Yan(陈全莉,亓利剑,张 琰). Journal of Gems & Gemology(宝石和宝石学杂志),2006,(1):9.
[4] ZHANG Sheng-nan,YU Xiao-yan(张胜男,余晓艳). 2011 Chinese Jewelry Academic Exchange Conference Proceedings(2011中国珠宝首饰学术交流会论文集),2011:296.
[5] LIU Jia,YANG Ming-xing,HE Chong,et al(刘 佳,杨明星,何 翀,等). Journal of Gems & Gemology(宝石和宝石学杂志),2019,21(5):56.
[6] WENG Shi-fu(翁诗甫). Fourier Transform Infrared Spectrometer(傅里叶变换红外光谱仪). Beijing: Chemical Industry Press(北京:化学工业出版社),2005.
[7] ZUO Rui,DAI Hui,JIANG Xiao-ping,et al(左 锐,戴 慧,蒋小平,等). Geology of Anhui(安徽地质),2017,27(3):222.
[8] HU Jie-han,ZHENG Xue-fang(胡皆汉,郑学仿). Practical Infrared Spectroscopy(实用红外光谱学). Beijing: Science Press(北京:科学出版社),2011.
[9] Liu L,Yang M,Li Y,et al. Gems & Gemology,2021,57(1):22.
[10] XU Feng-shun,CHEN Quan-li,DING Wei,et al(徐丰舜,陈全莉,丁 薇,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2021,41(9):2918.
[11] LUAN Li-jun,HAN Zhao-xin,WANG Chao-you,et al(栾丽君,韩照信,王朝友,等). Northwestern Geology(西北地质),2004,(3):77.
|
[1] |
LEI Hong-jun1, YANG Guang1, PAN Hong-wei1*, WANG Yi-fei1, YI Jun2, WANG Ke-ke2, WANG Guo-hao2, TONG Wen-bin1, SHI Li-li1. Influence of Hydrochemical Ions on Three-Dimensional Fluorescence
Spectrum of Dissolved Organic Matter in the Water Environment
and the Proposed Classification Pretreatment Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 134-140. |
[2] |
LIU Jia, ZHENG Ya-long, WANG Cheng-bo, YIN Zuo-wei*, PAN Shao-kui. Spectra Characterization of Diaspore-Sapphire From Hotan, Xinjiang[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 176-180. |
[3] |
GU Yi-lu1, 2,PEI Jing-cheng1, 2*,ZHANG Yu-hui1, 2,YIN Xi-yan1, 2,YU Min-da1, 2, LAI Xiao-jing1, 2. Gemological and Spectral Characterization of Yellowish Green Apatite From Mexico[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 181-187. |
[4] |
SONG Yi-ming1, 2, SHEN Jian1, 2, LIU Chuan-yang1, 2, XIONG Qiu-ran1, 2, CHENG Cheng1, 2, CHAI Yi-di2, WANG Shi-feng2,WU Jing1, 2*. Fluorescence Quantum Yield and Fluorescence Lifetime of Indole, 3-Methylindole and L-Tryptophan[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3758-3762. |
[5] |
YANG Ke-li1, 2, PENG Jiao-yu1, 2, DONG Ya-ping1, 2*, LIU Xin1, 2, LI Wu1, 3, LIU Hai-ning1, 3. Spectroscopic Characterization of Dissolved Organic Matter Isolated From Solar Pond[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3775-3780. |
[6] |
XUE Fang-jia, YU Jie*, YIN Hang, XIA Qi-yu, SHI Jie-gen, HOU Di-bo, HUANG Ping-jie, ZHANG Guang-xin. A Time Series Double Threshold Method for Pollution Events Detection in Drinking Water Using Three-Dimensional Fluorescence Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3081-3088. |
[7] |
XU Ya-fen1, LIU Xian-yu1*, CHEN Quan-li2, XU Chang3. Study on Mineral Composition and Spectral Characteristics of “Middle East Turquoise”[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2862-2867. |
[8] |
YANG Xin1, 2, XIA Min1, 2, YE Yin1, 2*, WANG Jing1, 2. Spatiotemporal Distribution Characteristics of Dissolved Organic Matter Spectrum in the Agricultural Watershed of Dianbu River[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2983-2988. |
[9] |
ZHU Yan-ping1, CUI Chuan-jin1*, CHENG Peng-fei1, 2, PAN Jin-yan1, SU Hao1, 2, ZHANG Yi1. Measurement of Oil Pollutants by Three-Dimensional Fluorescence
Spectroscopy Combined With BP Neural Network and SWATLD[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2467-2475. |
[10] |
LIU Xian-yu1, YANG Jiu-chang1, 2, TU Cai1, XU Ya-fen1, XU Chang3, CHEN Quan-li2*. Study on Spectral Characteristics of Scheelite From Xuebaoding, Pingwu County, Sichuan Province, China[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2550-2556. |
[11] |
QIU Cun-pu1, 2, TANG Xiao-xue2, WEN Xi-xian4, MA Xin-ling2, 3, XIA Ming-ming2, 3, LI Zhong-pei2, 3, WU Meng2, 3, LI Gui-long2, 3, LIU Kai2, 3, LIU Kai-li4, LIU Ming2, 3*. Effects of Calcium Salts on the Decomposition Process of Straw and the Characteristics of Three-Dimensional Excitation-Emission Matrices of the Dissolved Organic Matter in Decomposition Products[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2301-2307. |
[12] |
SHI Chuan-qi1, LI Yan2, HU Yu3, YU Shao-peng1*, JIN Liang2, CHEN Mei-ru1. Fluorescence Spectral Characteristics of Soil Dissolved Organic Matter in the River Wetland of Northern Cold Region, China[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1517-1523. |
[13] |
LI Yuan-jing1, 2, CHEN Cai-yun-fei1, 2, LI Li-ping1, 2*. Spectroscopy Study of γ-Ray Irradiated Gray Akoya Pearls[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1056-1062. |
[14] |
WEN Hui-lin1, YANG Ming-xing1, 2*, LIU Ling1. Mineralogical and Spectral Characteristics of Alunite From Xiaodonggou Turquoise Deposit, Baihe, Shaanxi[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1088-1094. |
[15] |
ZHAO An-di1, 3, CHEN Quan-li1, 2, 3*, ZHENG Xiao-hua2, LI Xuan1, 3, WU Yan-han1, 3, BAO Pei-jin1, 3. Study on Spectroscopic Characteristics of Turquoise Treated With
Phosphate and Porcelain[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1192-1198. |
|
|
|
|