|
|
|
|
|
|
Study on Spectral Characteristics of Scheelite From Xuebaoding, Pingwu County, Sichuan Province, China |
LIU Xian-yu1, YANG Jiu-chang1, 2, TU Cai1, XU Ya-fen1, XU Chang3, CHEN Quan-li2* |
1. College of Jewelry, Shanghai Jian Qiao University, Shanghai 201306, China
2. Gemmological Institute, China University of Geosciences (Wuhan), Wuhan 430074, China
3. Faculty of Earth Sciences, China University of Geosciences (Wuhan), Wuhan 430074, China
|
|
|
Abstract The Xuebaoding deposit which locates in Huya Township, Pingwu County, Mianyang City, Sichuan province, produces a kind of big rare orange scheelite with perfect crystal shape that collectors of gemstones and mineral crystals favor. The conventional gemological characteristics,infrared spectroscopy,Raman spectroscopy,ultraviolet-visible spectroscopy, and fluorescence spectroscopy were employed to study the spectral characteristics of five scheelite samples from Xuebaoding in this article in order to clarify the gemological characteristics of scheelite in this area . The typical infrared spectra show that: the fingerprint characteristics absorption in 440 cm-1 and region 800~900 cm-1 is induced by out-of-plane bending vibration andasymmetric stretching vibrations attributed to [WO4]2- tetrahedral groups, respectively. The functional group region (2 000~3 000 cm-1) absorption peaks are related to water. The Raman spectrum scattering main peak at 911 cm-1 corresponds to the ν1 symmetric stretching vibration of [WO4]2-; the Raman shift located in 797 cm-1 is caused by ν3 anti-symmetric stretching vibrations of [WO4]2-; the low intensity Raman scattering peak at 322 and 400 cm-1 correspond to the out-of-plane flexural ν2 vibration of [WO4]2-; The translational mode of (Ca—O) displays the Raman spectrum scattering peak at 211 cm-1. The ultraviolet-visible spectrum shows that the deep orange color of scheelite samples from the Xuebaoding deposit is related to absorption peaks at 584,588,682,743,750,803 and 874 nm. The ultraviolet-visible spectrum may correspond to the “didymium” which is a compound of Pr and Nd. The 3D fluorescence spectra show that colorless scheelite sample and deep orange scheelite samples have the same main fluorescence peak position and number, which is located in λex235 nm/λem455 nm,λex250 nm/λem490 nm andλex265 nm/λem523 nm. In addition to the above-mentioned main fluorescence peaks, the light orange scheelite samples also appear to have a fluorescence peak at λex250 nm/λem425 nm.
|
Received: 2022-06-09
Accepted: 2023-06-30
|
|
Corresponding Authors:
CHEN Quan-li
E-mail: chenquanli_0302@163.com
|
|
[1] ZHANG Ming-rong, LI Bei-jun, HU Guan-qin, et al(张明荣,李倍俊,胡关钦,等). Acta Optica Sinica(光学学报), 1998, 18(11): 1591.
[2] LIU Yan, DENG Jun, XING Yan-yan, et al(刘 琰,邓 军,邢延炎,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2008, 28(1): 121.
[3] LIU Yan, DENG Jun, LI Chao-feng, et al(刘 琰,邓 军,李潮峰,等). Chinese Science Bulletin(科学通报), 2007, 52(16): 1923.
[4] Culver S P, Brutchey R L. Dalton Transactions, 2016, 45: 18069.
[5] Huang Jingbin, Li Qingfeng, Wang Jia, et al. Dalton Transactions, 2018, 47: 8611.
[6] Fuat Bayrakçeken, Oktay J Demir, pek Ş. Karaaslan. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2007, 66(4-5): 1291.
[7] Morozov V, Arakcheeva A, Redkin B, et al. Inorganic Chemistry, 2012, 51(9): 5313.
[8] Ramakrishna P V. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, 149(5): 312.
[9] Cornacchia F, Di Lieto A, Tonelli M, et al. Optics Express, 2008, 16(20): 15932.
[10] Groń T, Karolewicz M, Tomaszewicz E, et al. Journal of Nanoparticle Research, 2019, 21(1): 8.
[11] WANG Han, HUANG Zhi-liang, LIU Yu(王 涵,黄志良,刘 羽). Journal of Wuhan Institute of Technology(武汉工程大学学报), 2008, 30(2): 78.
[12] GAO Dao-jiang, XIAO Ding-quan, BI Jian, et al(高道江,肖定全,毕 剑,等). Journal of Harbin University of Science and Technology(哈尔滨理工大学学报), 2002, 7(6): 60.
[13] CAO Fei, YANG Hui-peng, WANG Wei, et al(曹 飞,杨卉芃,王 威,等). Conservation and Utilization of Mineral Resources(矿产保护与利用), 2018, (2): 145.
[14] ZHU Hong-li, ZHANG Li-peng, DU Long, et al(祝红丽,张丽鹏,杜 龙,等). Acta Petrologica Sinica(岩石学报), 2020, 36(1): 13.
[15] Ghaderi M, Palin J M, Campbell I H, et al. Economic Geology, 1999, 94(3): 423.
[16] Nguyen T H, Nevolko P A, Phama T D, et al. Ore Geology Reviews, 2020, 123: 103578.
[17] BI Cheng-si(毕承思). Acta Geoscientica Sinica(地球学报), 1987, 9(3): 49.
[18] YAN Xing-guang, YIN Jing-wu, PIAO Ting-xian, et al(闫星光,尹京武,朴庭贤,等). Journal of Chinese Electron Microscopy Society(电子显微学报), 2013, 32(4): 318.
[19] HAN Jie, LI Yuan-bao, YANG Hong-peng, et al(韩 杰,李元宝,杨鸿鹏,等). Mineral Exploration(矿产勘查), 2019, 10(3): 525.
[20] Hazen R M, Finger L W, Mariathasan J W E. Journal of Physics and Chemistry of Solids, 1985, 46(2): 253.
[21] Momma K, Izumi F. Journal of Applied Crystallography, 2008, 41(3): 653.
[22] ZHOU Pei-ling(周佩玲). Acta Mineralogica Sinica(矿物学报), 1984,(4): 319.
[23] PENG Wen-shi,LIU Gao-kui(彭文世,刘高魁). Mineral Infrared Spectrum Atlas(矿物红外光谱图集). Beijing: Science Press(北京:科学出版社),1982. 244.
[24] Hawthorne F C. Spectroscopic Methods in Mineralogy and Geology (Reviews in Mineralogy 18), Berlin: De Gruyter, 2018: 204.
[25] Gunawardene M. Gems & Gemology, 1986, 22(3): 166.
[26] AN Na, GUO Qing-feng, LIAO Li-bing(安 娜, 郭庆丰, 廖立兵). Gemology & Technology(珠宝与科技:中国国际珠宝首饰学术交流会论文集), 2019. 173.
[27] CHEN Chao-yang, HUANG Wei-zhi, SHAO Tian, et al(陈超洋,黄伟志,邵 天,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2021, 41(5): 1483.
[28] Brugger J, Lahaye Y, Costa S, et al. Contributions to Mineralogy and Petrology, 2000, 139(3): 251.
|
[1] |
LI Jie, ZHOU Qu*, JIA Lu-fen, CUI Xiao-sen. Comparative Study on Detection Methods of Furfural in Transformer Oil Based on IR and Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 125-133. |
[2] |
WANG Fang-yuan1, 2, HAN Sen1, 2, YE Song1, 2, YIN Shan1, 2, LI Shu1, 2, WANG Xin-qiang1, 2*. A DFT Method to Study the Structure and Raman Spectra of Lignin
Monomer and Dimer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 76-81. |
[3] |
XING Hai-bo1, ZHENG Bo-wen1, LI Xin-yue1, HUANG Bo-tao2, XIANG Xiao2, HU Xiao-jun1*. Colorimetric and SERS Dual-Channel Sensing Detection of Pyrene in
Water[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 95-102. |
[4] |
LEI Hong-jun1, YANG Guang1, PAN Hong-wei1*, WANG Yi-fei1, YI Jun2, WANG Ke-ke2, WANG Guo-hao2, TONG Wen-bin1, SHI Li-li1. Influence of Hydrochemical Ions on Three-Dimensional Fluorescence
Spectrum of Dissolved Organic Matter in the Water Environment
and the Proposed Classification Pretreatment Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 134-140. |
[5] |
WANG Xin-qiang1, 3, CHU Pei-zhu1, 3, XIONG Wei2, 4, YE Song1, 3, GAN Yong-ying1, 3, ZHANG Wen-tao1, 3, LI Shu1, 3, WANG Fang-yuan1, 3*. Study on Monomer Simulation of Cellulose Raman Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 164-168. |
[6] |
LIU Jia, ZHENG Ya-long, WANG Cheng-bo, YIN Zuo-wei*, PAN Shao-kui. Spectra Characterization of Diaspore-Sapphire From Hotan, Xinjiang[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 176-180. |
[7] |
GU Yi-lu1, 2,PEI Jing-cheng1, 2*,ZHANG Yu-hui1, 2,YIN Xi-yan1, 2,YU Min-da1, 2, LAI Xiao-jing1, 2. Gemological and Spectral Characterization of Yellowish Green Apatite From Mexico[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 181-187. |
[8] |
HAN Xue1, 2, LIU Hai1, 2, LIU Jia-wei3, WU Ming-kai1, 2*. Rapid Identification of Inorganic Elements in Understory Soils in
Different Regions of Guizhou Province by X-Ray
Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 225-229. |
[9] |
WANG Lan-hua1, 2, CHEN Yi-lin1*, FU Xue-hai1, JIAN Kuo3, YANG Tian-yu1, 2, ZHANG Bo1, 4, HONG Yong1, WANG Wen-feng1. Comparative Study on Maceral Composition and Raman Spectroscopy of Jet From Fushun City, Liaoning Province and Jimsar County, Xinjiang Province[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 292-300. |
[10] |
WANG Hong-jian1, YU Hai-ye1, GAO Shan-yun1, LI Jin-quan1, LIU Guo-hong1, YU Yue1, LI Xiao-kai1, ZHANG Lei1, ZHANG Xin1, LU Ri-feng2, SUI Yuan-yuan1*. A Model for Predicting Early Spot Disease of Maize Based on Fluorescence Spectral Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3710-3718. |
[11] |
CHENG Hui-zhu1, 2, YANG Wan-qi1, 2, LI Fu-sheng1, 2*, MA Qian1, 2, ZHAO Yan-chun1, 2. Genetic Algorithm Optimized BP Neural Network for Quantitative
Analysis of Soil Heavy Metals in XRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3742-3746. |
[12] |
SONG Yi-ming1, 2, SHEN Jian1, 2, LIU Chuan-yang1, 2, XIONG Qiu-ran1, 2, CHENG Cheng1, 2, CHAI Yi-di2, WANG Shi-feng2,WU Jing1, 2*. Fluorescence Quantum Yield and Fluorescence Lifetime of Indole, 3-Methylindole and L-Tryptophan[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3758-3762. |
[13] |
LI Wei1, TAN Feng2*, ZHANG Wei1, GAO Lu-si3, LI Jin-shan4. Application of Improved Random Frog Algorithm in Fast Identification of Soybean Varieties[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3763-3769. |
[14] |
WANG Zhi-qiang1, CHENG Yan-xin1, ZHANG Rui-ting1, MA Lin1, GAO Peng1, LIN Ke1, 2*. Rapid Detection and Analysis of Chinese Liquor Quality by Raman
Spectroscopy Combined With Fluorescence Background[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3770-3774. |
[15] |
YANG Ke-li1, 2, PENG Jiao-yu1, 2, DONG Ya-ping1, 2*, LIU Xin1, 2, LI Wu1, 3, LIU Hai-ning1, 3. Spectroscopic Characterization of Dissolved Organic Matter Isolated From Solar Pond[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3775-3780. |
|
|
|
|