|
|
|
|
|
|
Optical Excitation Characteristics of ZnO under the Radiation Fields |
YIN Wen-yi1, LIU Yu-zhu1,2*, ZHANG Qi-hang1, LI Bing-sheng3*, QIN Chao-chao4 |
1. Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, Nanjing University of Information Science & Technology, Nanjing 210044, China
2. Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology (CICAEET), Nanjing 210044, China
3. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
4. College of Physics and Materials Science, Henan Normal University, Xinxiang 453007, China |
|
|
Abstract Based on the density functional theory DFT/BVP86 at 6-311++g(d,p) level, the ground states of ZnO molecule under different external electric fields are optimized. The influence of external electric field ranges from 0 to 0.08 a.u. on the geometrical parameters, dipole moment, total energy, energy gap., Infrared spectrum and UV-VIS absorption spectrum intensity are studied. The results show that the change of molecular structure is obvious, and it becomes strongly dependent on the field strength. As the electric field changes from 0 to 0.08 a.u., the bond length of ZnO molecular increases. And the electric dipole moment is proved to be increasing and the total molecular energy is decreasing all the time. The energy gap of EG is found to decrease with the increasing external field. The IR vibration spectrum of ZnO molecule shows an observable red shift. The oscillator strength of UV-Vis absorption spectrum is proved to be repeating the changes of the first increasing and then decreasing. The ultraviolet absorption peak is blue-shifted with the increase of the field intensity.
|
Received: 2017-06-14
Accepted: 2017-11-25
|
|
Corresponding Authors:
LIU Yu-zhu, LI Bing-sheng
E-mail: yuzhu.liu@gmail.com;b.s.li@impcas.ac.cn
|
|
[1] BAO Qi-meng, DONG Wei-xia, GU Xingg-yong, et al(包启蒙, 董伟霞, 顾幸勇, 等). China Ceramics(中国陶瓷),2012, 48(2): 28.
[2] SONG Guo-li, SUN Kai-xia(宋国利, 孙凯霞). Acta Photonica Sinica(光子学报), 2005, 34(4): 590.
[3] YANG Yi-fa, LONG Hua, YANG Guang, et al(杨义发, 龙 华, 杨 光, 等). Acta Phys. Sin.(物理学报), 2009, 58(4): 2785.
[4] WU Ming-ming, ZHANG Yi-jiang, LI Feng-feng, et al(吴明明, 张一江, 李锋锋, 等). China Ceramics(中国陶瓷), 2014, 50(3): 1.
[5] LIU Yu-zhu,LI Xiang-hang, Wang Jun-feng, et al(刘玉柱,李相鸿,王俊峰,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2017, 37(3): 679.
[6] Hu S D, Zhang B, Li Z J. Chin. Phys. B, 2009, 18(1): 315.
[7] WU Xue-ke, TANG Yan-lin, FANG Shi-cheng, et al(吴学科, 唐延林, 方世诚, 等). Journal of Atomic and Molecular Physics(原子与分子物理学报), 2016, 33(3): 385.
[8] WU Dong-lan, TU Juan, WAN Hui-jun, et al(伍冬兰, 涂 娟, 万慧军, 等). Journal of Atomic and Molecular Physics(原子与分子物理学报), 2014, 31(2): 197.
[9] LIU Yu-zhu,CHEN Yun-yun,ZHENG Gai-ge,et al(刘玉柱, 陈云云, 郑改革, 等). Acta Phys. Sin.(物理学报), 2016, 65: 053302.
[10] HUANG Duo-hui, WANG Pan-hou, MIN Jun(黄多辉, 王潘侯, 闵 军). Acta Phys. Sin.(物理学报), 2009, 58: 3052.
[11] JIANG Ming, GOU Fu-jun, YAN An-ying, et al(姜 明, 苟富均, 闫安英, 等). Acta Phys. Sin.(物理学报), 2010, 59(11): 7743.
[12] XU Guo-liang, Lü Wen-jing, LIU Yu-fang, et al(徐国亮, 吕文静, 刘玉芳, 等). Acta Phys. Sin.(物理学报), 2009, 58(5): 3058.
[13] AN Yue-hua, XIONG Bi-tao, XING Yun, et al(安跃华, 熊必涛, 邢 云, 等). Acta Phys. Sin.(物理学报), 2013, 62(7): 1.
[14] Frish M J, Trucks G W, Schlegel H B, et al. Gaussian 09, Revision C.01. Walling Ford: Gaussian Inc, 2010.
[15] Jain A, Kumar V, Kawazoe Y. Comp. Mater. Sci., 2006, 36: 258. |
[1] |
ZHENG Hong-quan, DAI Jing-min*. Research Development of the Application of Photoacoustic Spectroscopy in Measurement of Trace Gas Concentration[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 1-14. |
[2] |
CHENG Jia-wei1, 2,LIU Xin-xing1, 2*,ZHANG Juan1, 2. Application of Infrared Spectroscopy in Exploration of Mineral Deposits: A Review[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 15-21. |
[3] |
FAN Ping-ping,LI Xue-ying,QIU Hui-min,HOU Guang-li,LIU Yan*. Spectral Analysis of Organic Carbon in Sediments of the Yellow Sea and Bohai Sea by Different Spectrometers[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 52-55. |
[4] |
LI Jie, ZHOU Qu*, JIA Lu-fen, CUI Xiao-sen. Comparative Study on Detection Methods of Furfural in Transformer Oil Based on IR and Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 125-133. |
[5] |
WANG Fang-yuan1, 2, HAN Sen1, 2, YE Song1, 2, YIN Shan1, 2, LI Shu1, 2, WANG Xin-qiang1, 2*. A DFT Method to Study the Structure and Raman Spectra of Lignin
Monomer and Dimer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 76-81. |
[6] |
BAI Xi-lin1, 2, PENG Yue1, 2, ZHANG Xue-dong1, 2, GE Jing1, 2*. Ultrafast Dynamics of CdSe/ZnS Quantum Dots and Quantum
Dot-Acceptor Molecular Complexes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 56-61. |
[7] |
XU Tian1, 2, LI Jing1, 2, LIU Zhen-hua1, 2*. Remote Sensing Inversion of Soil Manganese in Nanchuan District, Chongqing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 69-75. |
[8] |
YANG Cheng-en1, 2, LI Meng3, LU Qiu-yu2, WANG Jin-ling4, LI Yu-ting2*, SU Ling1*. Fast Prediction of Flavone and Polysaccharide Contents in
Aronia Melanocarpa by FTIR and ELM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 62-68. |
[9] |
LIU Zhen1*, LIU Li2*, FAN Shuo2, ZHAO An-ran2, LIU Si-lu2. Training Sample Selection for Spectral Reconstruction Based on Improved K-Means Clustering[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 29-35. |
[10] |
YANG Chao-pu1, 2, FANG Wen-qing3*, WU Qing-feng3, LI Chun1, LI Xiao-long1. Study on Changes of Blue Light Hazard and Circadian Effect of AMOLED With Age Based on Spectral Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 36-43. |
[11] |
GAO Feng1, 2, XING Ya-ge3, 4, LUO Hua-ping1, 2, ZHANG Yuan-hua3, 4, GUO Ling3, 4*. Nondestructive Identification of Apricot Varieties Based on Visible/Near Infrared Spectroscopy and Chemometrics Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 44-51. |
[12] |
ZHENG Pei-chao, YIN Yi-tong, WANG Jin-mei*, ZHOU Chun-yan, ZHANG Li, ZENG Jin-rui, LÜ Qiang. Study on the Method of Detecting Phosphate Ions in Water Based on
Ultraviolet Absorption Spectrum Combined With SPA-ELM Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 82-87. |
[13] |
XU Qiu-yi1, 3, 4, ZHU Wen-yue3, 4, CHEN Jie2, 3, 4, LIU Qiang3, 4 *, ZHENG Jian-jie3, 4, YANG Tao2, 3, 4, YANG Teng-fei2, 3, 4. Calibration Method of Aerosol Absorption Coefficient Based on
Photoacoustic Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 88-94. |
[14] |
LI Xin-ting, ZHANG Feng, FENG Jie*. Convolutional Neural Network Combined With Improved Spectral
Processing Method for Potato Disease Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 215-224. |
[15] |
XING Hai-bo1, ZHENG Bo-wen1, LI Xin-yue1, HUANG Bo-tao2, XIANG Xiao2, HU Xiao-jun1*. Colorimetric and SERS Dual-Channel Sensing Detection of Pyrene in
Water[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 95-102. |
|
|
|
|