|
|
|
|
|
|
Discrimination of Transgenic Maize Containing the Cry1Ab/Cry2Aj and G10evo Genes Using Near Infrared Spectroscopy (NIR) |
PENG Cheng1, FENG Xu-ping2*, HE Yong2, ZHANG Chu2, ZHAO Yi-ying2, XU Jun-feng1 |
1. State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences,Hangzhou 310021, China
2. College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China |
|
|
Abstract Genetic engineering technique has made rapid strides in the past decades,however, the potential problems of this technique for environmental, ethical and religious impact are unknown. It is necessary to research on the detection of genetically modified organisms in agricultural crops and in products derived. In the present study, Near infrared spectroscopy (NIR) combined with chemometrics was successfully proposed to identify transgenic and non-transgenic maize. Transgenic maize single kernel and flour containing both cry1Ab/cry2Aj-G10evo protein and their parent, non-transgenic ones were measured in NIR diffuse reflectance mode with spectral range of 900~1 700 nm. Savitzky-Golay(SG)was used to preprocess the selection spectral region with absolute noises. Two classification methods, partial least square (PLS) and support vector machine (SVM): were used to build discrimination models based on the preprocessed full spectra and the dimension reduction information extracted by principal component analysis (PCA). Discriminant results of transgenic maize kernel based on SVM obtained a better performance by using the preprocessed full spectra compared to PLS model. The SVM achieved more than 90% calibration accuracy, while the PLS obtained just about 85% accuracy. By applying the PCA dimension reduction of the NIR reflectance in conjunction with the SVM model, the discrimination of transgenic from non-transgenic maize kernel was with accuracy up to 100% for both calibration set and validation set. The correct classification for transgenic and non-transgenic maize flour was 90.625% using SVM based on preprocessed full spectra, although degration of exogenous gene and protein existed during the milling. The results indicated that INR spectroscopy techniques and chemometrics methods could be feasible ways to differentiate transgenic maize and other transgenic food.
|
Received: 2016-08-02
Accepted: 2017-02-19
|
|
Corresponding Authors:
FENG Xu-ping
E-mail: pimmmx@163.com
|
|
[1] Domingo J L,Giné B J. Environment International, 2011, 37(4): 734.
[2] Hilbeck A, Binimelis R, Defarge N, et al. Environmental Sciences Europe, 2015, 27(1): 1.
[3] Alishahi A, Farahmand H, Prieto N, et al. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2010, 75(1): 1.
[4] WANG Hai-long, YANG Xiang-dong, ZHANG Chu, et al(王海龙,杨向东,张 初,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2016, 36(6): 1843.
[5] Luna A S, Da S A, Pinho J S, et al. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2013,100(12): 115.
[6] Biradar K S, Nadaf H L, Kenganal M. Indian Journal of Plant Physiology, 2010,15(3):234.
[7] Wu H, Zhang Y, Zhu C, et al. International Journal of Molecular Sciences, 2012, 13(2): 1919.
[8] Ballari R V,Martin A. Food Chemistry, 2013, 141(3): 2130.
[9] Savitzky A,Golay M J E. Analytical Chemistry, 1964, 36(8): 1627.
[10] Jung Y M. Bulletin- Korean Chemical Society, 2003, 24(9): 1345.
[11] Geladi P,Kowalski B R. Analytica Chimica Acta, 1986, 185(86): 1.
[12] Cortes C,Vapnik V. Machine Learning, 1995, 20(3): 273.
[13] Hubert M,Rousseeuw P J. Technometrics, 2010, 47(1): 64.
[14] Workman J J. Applied Spectroscopy Reviews, 1996, 31(3): 251. |
[1] |
GAO Feng1, 2, XING Ya-ge3, 4, LUO Hua-ping1, 2, ZHANG Yuan-hua3, 4, GUO Ling3, 4*. Nondestructive Identification of Apricot Varieties Based on Visible/Near Infrared Spectroscopy and Chemometrics Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 44-51. |
[2] |
BAO Hao1, 2,ZHANG Yan1, 2*. Research on Spectral Feature Band Selection Model Based on Improved Harris Hawk Optimization Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 148-157. |
[3] |
HU Cai-ping1, HE Cheng-yu2, KONG Li-wei3, ZHU You-you3*, WU Bin4, ZHOU Hao-xiang3, SUN Jun2. Identification of Tea Based on Near-Infrared Spectra and Fuzzy Linear Discriminant QR Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3802-3805. |
[4] |
LIU Xin-peng1, SUN Xiang-hong2, QIN Yu-hua1*, ZHANG Min1, GONG Hui-li3. Research on t-SNE Similarity Measurement Method Based on Wasserstein Divergence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3806-3812. |
[5] |
BAI Xue-bing1, 2, SONG Chang-ze1, ZHANG Qian-wei1, DAI Bin-xiu1, JIN Guo-jie1, 2, LIU Wen-zheng1, TAO Yong-sheng1, 2*. Rapid and Nndestructive Dagnosis Mthod for Posphate Dficiency in “Cabernet Sauvignon” Gape Laves by Vis/NIR Sectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3719-3725. |
[6] |
WANG Qi-biao1, HE Yu-kai1, LUO Yu-shi1, WANG Shu-jun1, XIE Bo2, DENG Chao2*, LIU Yong3, TUO Xian-guo3. Study on Analysis Method of Distiller's Grains Acidity Based on
Convolutional Neural Network and Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3726-3731. |
[7] |
LUO Li, WANG Jing-yi, XU Zhao-jun, NA Bin*. Geographic Origin Discrimination of Wood Using NIR Spectroscopy
Combined With Machine Learning Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3372-3379. |
[8] |
ZHANG Shu-fang1, LEI Lei2, LEI Shun-xin2, TAN Xue-cai1, LIU Shao-gang1, YAN Jun1*. Traceability of Geographical Origin of Jasmine Based on Near
Infrared Diffuse Reflectance Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3389-3395. |
[9] |
YANG Qun1, 2, LING Qi-han1, WEI Yong1, NING Qiang1, 2, KONG Fa-ming1, ZHOU Yi-fan1, 2, ZHANG Hai-lin1, WANG Jie1, 2*. Non-Destructive Monitoring Model of Functional Nitrogen Content in
Citrus Leaves Based on Visible-Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3396-3403. |
[10] |
HUANG Meng-qiang1, KUANG Wen-jian2, 3*, LIU Xiang1, HE Liang4. Quantitative Analysis of Cotton/Polyester/Wool Blended Fiber Content by Near-Infrared Spectroscopy Based on 1D-CNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3565-3570. |
[11] |
HUANG Zhao-di1, CHEN Zai-liang2, WANG Chen3, TIAN Peng2, ZHANG Hai-liang2, XIE Chao-yong2*, LIU Xue-mei4*. Comparing Different Multivariate Calibration Methods Analyses for Measurement of Soil Properties Using Visible and Short Wave-Near
Infrared Spectroscopy Combined With Machine Learning Algorithms[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3535-3540. |
[12] |
KANG Ming-yue1, 3, WANG Cheng1, SUN Hong-yan3, LI Zuo-lin2, LUO Bin1*. Research on Internal Quality Detection Method of Cherry Tomatoes Based on Improved WOA-LSSVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3541-3550. |
[13] |
HUANG Hua1, LIU Ya2, KUERBANGULI·Dulikun1, ZENG Fan-lin1, MAYIRAN·Maimaiti1, AWAGULI·Maimaiti1, MAIDINUERHAN·Aizezi1, GUO Jun-xian3*. Ensemble Learning Model Incorporating Fractional Differential and
PIMP-RF Algorithm to Predict Soluble Solids Content of Apples
During Maturing Period[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3059-3066. |
[14] |
CHEN Jia-wei1, 2, ZHOU De-qiang1, 2*, CUI Chen-hao3, REN Zhi-jun1, ZUO Wen-juan1. Prediction Model of Farinograph Characteristics of Wheat Flour Based on Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3089-3097. |
[15] |
GUO Ge1, 3, 4, ZHANG Meng-ling3, 4, GONG Zhi-jie3, 4, ZHANG Shi-zhuang3, 4, WANG Xiao-yu2, 5, 6*, ZHOU Zhong-hua1*, YANG Yu2, 5, 6, XIE Guang-hui3, 4. Construction of Biomass Ash Content Model Based on Near-Infrared
Spectroscopy and Complex Sample Set Partitioning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3143-3149. |
|
|
|
|