|
|
|
|
|
|
Molecular Structure and Spectrum of GaN under the Radiation Fields |
YIN Wen-yi1, LIU Yu-zhu1,2*, LIN Hua1, LI Bing-sheng3*, QIN Chao-chao4 |
1. School of Physics and Opto-electronics Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
2. Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology (CICAEET), Nanjing 210044, China
3. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
4. Department of Physics, Henan Normal University, Xinxiang 453007, China |
|
|
Abstract Based on the density functional theory DFT/B3LYP at 6-311++g(d, p) level, the ground states of GaN molecule under different external electric fields were optimized. The influence of external electric field ranging from 0 to 0.025 a.u. on the geometrical parameters, dipole moment, total energy, energy gap, Infrared spectrum, Raman spectrum and UV-VIS absorption spectrum intensity were studied. The results showed that the changes of molecular structure were strongly dependent on the applied electric field. As the electric field changed from 0 to 0.025 a.u., the bond length of GaN molecular decreased, while the electric dipole moment was proved to be decreasing and the total molecular energy increased all the time. The energy gap of Eg was found to decrease with the increasing external field. The IR vibration spectrum of GaN molecule showed an observable blue shift and the Raman vibration spectrum appears blue shift phenomenon too. The oscillator strength of UV-VIS absorption spectrum was proved to be repeating the changes of the first decreasing and then increased. The ultraviolet absorption peak was red-shifted with the increase of the field intensity.
|
Received: 2017-02-22
Accepted: 2017-06-28
|
|
Corresponding Authors:
LIU Yu-zhu,LI Bing-sheng
E-mail: yuzhu.liu@gmail.com;b.s.li@impcas.ac.cn
|
|
[1] Morkoc H. J. Appl. Phys.,1994, 76:1363.
[2] Davies S, Huang T S, Gass M H, et al. Appl. Phys. Lett., 2004, 84: 2556.
[3] Wang T X, Li Y, Liu Y M. Phys. Stat. Sol. B,2011, 248:1671.
[4] Zhao L X, Yu Z G, Sun B, et al. Chin. Phys. B, 2015, 24: 068506.
[5] Chumbes E M, Schremer A T, Smart J A. IEEE Transactions on Electron Devices,2001, 48:420.
[6] LIU Yu-zhu, LI Xiang-hong, WANG Jun-feng, et al(刘玉柱,李相鸿,王俊锋,等). Spectroscopy and Spectral Ananlysis(光谱学与光谱分析), 2017, 37(3):679.
[7] Satyanarayana,Moorthy D V, Kotaiah B. IOSR Journal of Engineering,2012, 2:2250.
[8] Klabunde K J, Stark J, Koper O, et al. J. Phys. Chem., 1996, 100: 12142.
[9] WU Dong-lan, TU Juan, WANG Hui-jun(伍冬兰,涂 娟,万慧军). J. At. Mol. Phys.(原子与分子物理学报), 2014, 31:197.
[10] LIU Fu-ti, ZHANG Shu-hua, SHAO Ju-xiang(柳福提, 张淑华, 邵菊香). J. At. Mol. Phys.(原子与分子物理学报), 2010, 27: 429.
[11] HUANG Duo-hui, WANG Fan-hou, MIN Jun(黄多辉, 王潘侯, 闵 军). Acta Phys. Sin.(物理学报), 2009, 58: 3052.
[12] WU Xue-ke, LIANG Dong-mei,JING Tao(吴学科, 梁冬梅, 荆 涛). J. At. Mol. Phys.(原子与分子物理学报),2014, 31:187.
[13] XU Hong-ping, YIN Yue-hong(徐红萍,尹跃洪). J. At. Mol. Phys.(原子与分子物理学报), 2016, 33: 1.
[14] JIANG Ming, GOU Fu-jun, YAN An-ying(姜 明,苟富均, 闫安英). Acta Phys. Sin.(物理学报), 2010, 59: 7743.
[15] XU Guo-liang, Lü Wen-jing, LIU Yu-fang(徐国亮, 吕文静, 刘玉芳). Acta Phys. Sin.(物理学报), 2009, 58: 3058.
[16] LIU Yu-zhu, CHEN Yun-yun, ZHENG Gai-ge, et al(刘玉柱, 陈云云, 郑改革, 等). Acta Phys. Sin.(物理学报),2016, 65:053302.
[17] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, Revision E.01. Gaussian, Inc., Wallingford CT, 2009.
[18] Li H, Dai J, Li J. J. Phys. Chem. C,2010, 114:11390. |
[1] |
ZHENG Hong-quan, DAI Jing-min*. Research Development of the Application of Photoacoustic Spectroscopy in Measurement of Trace Gas Concentration[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 1-14. |
[2] |
CHENG Jia-wei1, 2,LIU Xin-xing1, 2*,ZHANG Juan1, 2. Application of Infrared Spectroscopy in Exploration of Mineral Deposits: A Review[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 15-21. |
[3] |
FAN Ping-ping,LI Xue-ying,QIU Hui-min,HOU Guang-li,LIU Yan*. Spectral Analysis of Organic Carbon in Sediments of the Yellow Sea and Bohai Sea by Different Spectrometers[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 52-55. |
[4] |
LI Jie, ZHOU Qu*, JIA Lu-fen, CUI Xiao-sen. Comparative Study on Detection Methods of Furfural in Transformer Oil Based on IR and Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 125-133. |
[5] |
WANG Fang-yuan1, 2, HAN Sen1, 2, YE Song1, 2, YIN Shan1, 2, LI Shu1, 2, WANG Xin-qiang1, 2*. A DFT Method to Study the Structure and Raman Spectra of Lignin
Monomer and Dimer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 76-81. |
[6] |
BAI Xi-lin1, 2, PENG Yue1, 2, ZHANG Xue-dong1, 2, GE Jing1, 2*. Ultrafast Dynamics of CdSe/ZnS Quantum Dots and Quantum
Dot-Acceptor Molecular Complexes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 56-61. |
[7] |
XU Tian1, 2, LI Jing1, 2, LIU Zhen-hua1, 2*. Remote Sensing Inversion of Soil Manganese in Nanchuan District, Chongqing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 69-75. |
[8] |
YANG Cheng-en1, 2, LI Meng3, LU Qiu-yu2, WANG Jin-ling4, LI Yu-ting2*, SU Ling1*. Fast Prediction of Flavone and Polysaccharide Contents in
Aronia Melanocarpa by FTIR and ELM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 62-68. |
[9] |
LIU Zhen1*, LIU Li2*, FAN Shuo2, ZHAO An-ran2, LIU Si-lu2. Training Sample Selection for Spectral Reconstruction Based on Improved K-Means Clustering[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 29-35. |
[10] |
YANG Chao-pu1, 2, FANG Wen-qing3*, WU Qing-feng3, LI Chun1, LI Xiao-long1. Study on Changes of Blue Light Hazard and Circadian Effect of AMOLED With Age Based on Spectral Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 36-43. |
[11] |
GAO Feng1, 2, XING Ya-ge3, 4, LUO Hua-ping1, 2, ZHANG Yuan-hua3, 4, GUO Ling3, 4*. Nondestructive Identification of Apricot Varieties Based on Visible/Near Infrared Spectroscopy and Chemometrics Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 44-51. |
[12] |
ZHENG Pei-chao, YIN Yi-tong, WANG Jin-mei*, ZHOU Chun-yan, ZHANG Li, ZENG Jin-rui, LÜ Qiang. Study on the Method of Detecting Phosphate Ions in Water Based on
Ultraviolet Absorption Spectrum Combined With SPA-ELM Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 82-87. |
[13] |
XU Qiu-yi1, 3, 4, ZHU Wen-yue3, 4, CHEN Jie2, 3, 4, LIU Qiang3, 4 *, ZHENG Jian-jie3, 4, YANG Tao2, 3, 4, YANG Teng-fei2, 3, 4. Calibration Method of Aerosol Absorption Coefficient Based on
Photoacoustic Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 88-94. |
[14] |
LI Xin-ting, ZHANG Feng, FENG Jie*. Convolutional Neural Network Combined With Improved Spectral
Processing Method for Potato Disease Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 215-224. |
[15] |
XING Hai-bo1, ZHENG Bo-wen1, LI Xin-yue1, HUANG Bo-tao2, XIANG Xiao2, HU Xiao-jun1*. Colorimetric and SERS Dual-Channel Sensing Detection of Pyrene in
Water[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 95-102. |
|
|
|
|