光谱学与光谱分析 |
|
|
|
|
|
Raman Spectroscopy Study Structural Changes in Black Bean Protein Isolate upon Ultrasonic-Treatment |
YANG Yong1,2, WANG Zhong-jiang2, BI Shuang2, SUI Xiao-nan2, QI Bao-kun2, LI Yang2*, JIANG Lian-zhou2* |
1. College of Food Science,Northeast Agricultural University, Harbin 150030,China 2. Key Laboratory of Processing Agricultural Products of Heilongjiang Province, College of Food and Bioengineering, Qiqihar University, Qiqihar 161006,China |
|
|
Abstract This article focused on the assessment of the potential of Raman spectroscopy for the determination of structural changes in black-bean protein isolate (BBPI) dispersions with low-frequency (20 kHz) ultrasonication applied at various powers (150, 300 or 450 W) and for different durations (12 or 24 min). It also reported on differential scanning calorimetry analyses. A decrease in TD at low- and medium-power ultrasonication confirmed these ultrasonication treatment disrupted internal hydrophobic interactions of protein molecules and broke up unstable aggregates to smaller soluble protein aggregates, while an increase in TD at high-power was attributed to repolymerization of aggregates. Raman spectroscopy analysis revealed a decrease in the α-helix proportion and an increase in β-sheets after ultrasonic treatment except Sample E (300 W, 24 min). Transformation of aggregation results in a reconstruction in secondary structure of BBPI, especially in β-sheet structure. Ultrasonic-treatment induced a decrease in the normalized intensity of the Raman band near 760 cm-1 which indicated that Tryptophan residues tended to expose and also indicated protein partially unfolding. No significant difference was found in Tyr doublet ratios between unheated and ultrasound-treated BBPI indicated that ultrasound did not change the microenvironment around tyrosyl residues. While the intensity of 1 450 cm-1 band increased with increasing ultrasonic intensity and treatment time, and then decreased with further increase in power and treatment time. In general, the formation of aggregation transferred g-g-t conformation to t-g-t conformation. Though some mechanism of aggregation-repolymerization of BBPI remains to be clearly defined, Raman spectroscopy provide a feasible tool to study the structural changes of BBPI prepared under different ultrasonic conditions, give a new perspective to elucidation of protein structure.
|
Received: 2015-10-26
Accepted: 2016-02-05
|
|
Corresponding Authors:
LI Yang, JIANG Lian-zhou
E-mail: liyanghuangyu@163.com;jlzname@163.com
|
|
[1] Jiang L, et al. Food Research International, 2014,62: 595. [2] Chandrapala J, et al. Ultrasonics Sonochemistry, 2012,19(5): 975. [3] Chandrapala J, et al. Trends in Food Science & Technology, 2012,26(2): 88. [4] Mu L, et al. Journal of Agricultural and Food Chemistry, 2010,58(7): 4494. [5] Güzey D, et al. Food Hydrocolloids, 2006,20(5): 669. [6] Hu H, et al. Food Hydrocolloids, 2013,30(2): 647. [7] Ishikawa D, Motomura A, Igarashi Y, et al. Spectroscopy and Spectral Analysis, 2015,35(4): 865. [8] Wong H W, et al. Food Chemistry, 2009,113(2): 363. [9] Herrero A M. Critical Reviews in Food Science and Nutrition, 2008,48(6): 512. [10] Hua Y, et al. Food Research International, 2005,38(4): 377. [11] Herrero A M, Jiménez‐Colmenero F, Carmona P. International Journal of Food Science & Technology, 2009, 44(4): 711. [12] Tu A. Advances in Infrared and Raman Spectroscopy, 1986,13: 47. [13] Di-Chan E, Nakai S, Hirotsuka M. Raman Spectroscopy as a Probe of Protein Structure in Food Systems. in Protein Structure-Function Relationships in Foods. Springer,1994. 163. [14] Stathopulos P B, et al. Protein Science, 2004,13(11): 3017. [15] Lee H J, Choi C, Lee S J. Journal of Biological Chemistry, 2002,277(1): 671. [16] Meng G, Ma C Y, Phillips D L. Food Chemistry, 2003, 81(3): 411. |
[1] |
LI Jie, ZHOU Qu*, JIA Lu-fen, CUI Xiao-sen. Comparative Study on Detection Methods of Furfural in Transformer Oil Based on IR and Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 125-133. |
[2] |
WANG Fang-yuan1, 2, HAN Sen1, 2, YE Song1, 2, YIN Shan1, 2, LI Shu1, 2, WANG Xin-qiang1, 2*. A DFT Method to Study the Structure and Raman Spectra of Lignin
Monomer and Dimer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 76-81. |
[3] |
XING Hai-bo1, ZHENG Bo-wen1, LI Xin-yue1, HUANG Bo-tao2, XIANG Xiao2, HU Xiao-jun1*. Colorimetric and SERS Dual-Channel Sensing Detection of Pyrene in
Water[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 95-102. |
[4] |
WANG Xin-qiang1, 3, CHU Pei-zhu1, 3, XIONG Wei2, 4, YE Song1, 3, GAN Yong-ying1, 3, ZHANG Wen-tao1, 3, LI Shu1, 3, WANG Fang-yuan1, 3*. Study on Monomer Simulation of Cellulose Raman Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 164-168. |
[5] |
WANG Cai-ling1,ZHANG Jing1,WANG Hong-wei2*, SONG Xiao-nan1, JI Tong3. A Hyperspectral Image Classification Model Based on Band Clustering and Multi-Scale Structure Feature Fusion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 258-265. |
[6] |
WANG Lan-hua1, 2, CHEN Yi-lin1*, FU Xue-hai1, JIAN Kuo3, YANG Tian-yu1, 2, ZHANG Bo1, 4, HONG Yong1, WANG Wen-feng1. Comparative Study on Maceral Composition and Raman Spectroscopy of Jet From Fushun City, Liaoning Province and Jimsar County, Xinjiang Province[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 292-300. |
[7] |
TIAN Fu-chao1, CHEN Lei2*, PEI Huan2, BAI Jie-qi1, ZENG Wen2. Study of Factors Influencing the Length of Argon Plasma Jets at
Atmospheric Pressure With Needle Ring Electrodes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3682-3689. |
[8] |
WANG Ling-juan, OU Quan-hong, YAN Hao, TANG Jun-qi*. Preparation and Catalytic Properties of Gold Nanoflowers[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3747-3752. |
[9] |
LI Wei1, TAN Feng2*, ZHANG Wei1, GAO Lu-si3, LI Jin-shan4. Application of Improved Random Frog Algorithm in Fast Identification of Soybean Varieties[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3763-3769. |
[10] |
WANG Zhi-qiang1, CHENG Yan-xin1, ZHANG Rui-ting1, MA Lin1, GAO Peng1, LIN Ke1, 2*. Rapid Detection and Analysis of Chinese Liquor Quality by Raman
Spectroscopy Combined With Fluorescence Background[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3770-3774. |
[11] |
LIU Hao-dong1, 2, JIANG Xi-quan1, 2, NIU Hao1, 2, LIU Yu-bo1, LI Hui2, LIU Yuan2, Wei Zhang2, LI Lu-yan1, CHEN Ting1,ZHAO Yan-jie1*,NI Jia-sheng2*. Quantitative Analysis of Ethanol Based on Laser Raman Spectroscopy Normalization Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3820-3825. |
[12] |
LU Wen-jing, FANG Ya-ping, LIN Tai-feng, WANG Hui-qin, ZHENG Da-wei, ZHANG Ping*. Rapid Identification of the Raman Phenotypes of Breast Cancer Cell
Derived Exosomes and the Relationship With Maternal Cells[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3840-3846. |
[13] |
LI Qi-chen1, 2, LI Min-zan1, 2*, YANG Wei2, 3, SUN Hong2, 3, ZHANG Yao1, 3. Quantitative Analysis of Water-Soluble Phosphorous Based on Raman
Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3871-3876. |
[14] |
ZHENG Ni-na1, 2*, XIE Pin-hua1, QIN Min1, DUAN Jun1. Research on the Influence of Lamp Structure of the Combined LED Broadband Light Source on Differential Optical Absorption Spectrum
Retrieval and Its Removing Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3339-3346. |
[15] |
GUO He-yuanxi1, LI Li-jun1*, FENG Jun1, 2*, LIN Xin1, LI Rui1. A SERS-Aptsensor for Detection of Chloramphenicol Based on DNA Hybridization Indicator and Silver Nanorod Array Chip[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3445-3451. |
|
|
|
|