光谱学与光谱分析 |
|
|
|
|
|
Influence of Nitrogen Flow Rate on the Structure and Luminescence Properties of Silicon-Rich Silicon Nitride Film Materials in a High Hydrogen Atmosphere |
ZHANG Lin-rui, ZHOU Bing-qing*, ZHANG Na,LU Xiao-cui, WUREN Tu-ya, GAO Ai-ming |
College of Physics and Electron Information of Inner Mongolia Normal University, Key Lab of Physics and Chemistry for Functional Material, Huhhot 010022, China |
|
|
Abstract High hydrogenated silicon-rich silicon nitride(SiNx∶H)thin films are deposited on the glass and monocrystalline silicon(110) substrates by plasma enhanced chemical vapor deposition using SiH4 and H2 as the main reaction gas with doping the N2. The ultraviolet-visible absorption spectrum, Fourier transform infrared absorption spectroscopy, Raman spectroscopy and photoluminescence spectrum are applied to characterize the changes of the band gap, the microstructure and related photoluminescence properties of the nitrogen-doped silicon film. It shows that hydrogen atoms can suppress the defects in the film and make film present silicon-rich under the low SiH4/H2 flow ratio, but they are not beneficial to the formation of silicon clusters in a hydrogen atmosphere. With the incorporation of nitrogen atoms, all the content of Si-N bonds, band gap and the degree of disorder in the microstructure of the films increase, films produce light emission related to the defect states. While the content of doped nitrogen atoms are further increased, it appears the band tail emission. Then the relationships between several light emissions and microstructure to be discussed. These results are useful for the optimization of light emission and microstructure for the silicon-rich silicon nitride film material prepared by PECVD.
|
Received: 2015-05-20
Accepted: 2015-09-25
|
|
Corresponding Authors:
ZHOU Bing-qing
E-mail: zhoubq@imnu.edu.cn
|
|
[1] So Y H, Huang S J, Conibeer G, et al. Thin Solid Films, 2011, 519: 5408. [2] JIANG Li-hua, ZENG Xiang-bin, ZHANG Xiao(姜礼华,曾祥斌,张 笑). Acta Phys. Sin.(物理学报),2012, 61(1):16803. [3] Park N M,Choi C J,Seong T Y,et al. Phys. Rev. Lett., 2001, 86(7):1355. [4] Kim T W,Cho C H,Kim B H,et al. Appl. Phys. Lett.,2006, 88(12):123102-1. [5] Wang M,Xie M. Ferraioli L,et al. J. Appl. Phys., 2008, 104(8): 083504-1. [6] Wang M H, Yang D R, Li D S, et al. J. Appl. Phys., 2007, 101(10): 103504-1. [7] Molinari E M, Rinnert H, Vergnat M. J. Phys. D: Appl. Phys., 2008, 41: 175410. [8] Lee K M, Kim T H, Hwang J D, et al. Scripta Materialia, 2009, 60: 703. [9] Kim B H, Cho C H, Kim T W, et al. Appl. Phys. Lett.,2005, 86(9): 091908-1. [10] Mckel H, Lüdemann R. J. Appl. Phys., 2002, 92(5): 2602. [11] Molinari M, Rinnert H, Vergnat M. Appl. Phys. Lett., 2001, 79(14): 2172. [12] YU Wei, LI Ya-chao, DING Wen-ge, et al(于 威,李亚超,丁文革,等). Acta Phys. Sin.(物理学报), 2008, 57(6): 3661. [13] Wang M H, Li D S, Yuan Z Z, et al. Appl. Phys. Lett.,2007, 90(13): 131903-1. [14] Molinari M, Rinnert H, Vergnat M. J. Appl. Phys.,2007, 101(12): 123532-1. [15] He Y L, Yin C Z, Cheng G X, et al. Appl. Phys.,1994, 75(2): 797. [16] Langford A A, Fleet M L, Nelson B P, et al. Phys. Rev. B,1992, 45(23): 13367. [17] Park N M, Kim S H, Sung G Y, et al. Chemical Vapor Deposition,2002, 8(6): 254. [18] Wang W X, Li D H, Liu Z C, et al. Appl. Phys. Lett., 1993, 62(3): 321. [19] LIAO Wu-gang, ZENG Xiang-bin, WEN Guo-zhi, et al(廖武刚,曾祥斌,文国知,等). Acta Phys. Sin.(物理学报), 2013, 62(12): 126801-1. [20] Zhang Longlong, Zhou Bingqing,Zhang Linrui, et al. Bulletin of the Chinese Ceramic Society,2014, 33(4): 757 [21] ZOU Xiang-yun, FAN Jin-she, JIANG Yi-xiang(邹祥云,范进社,蒋一祥). Acta Phys. Sin.(物理学报), 2012, 64(14):148106-1. [22] ZHANG Shi-bin, LIAO Xian-bo, AN Long, et al(张世斌,廖显伯,安 龙等). Acta Phys. Sin.(物理学报)2002, 51(8):1811. [23] Hao H L, Wu L K, Shen W Z. Appl. Phys. Lett., 2007, 91(20):201922-1. [24] Mo C M,Zhang L D,Xie C Y,et alT. J. Appl. Phys., 1993, 73(10): 5185. [25] Mercaldo L V, Esposito E M, Veneri P D, et al. J. Appl. Phys., 2011, 109(9): 093512. [26] Cullis A G, Canham L T, Calcott P D J. J. Appl. Phys., 1997, 82(3): 909. |
[1] |
WANG Cai-ling1,ZHANG Jing1,WANG Hong-wei2*, SONG Xiao-nan1, JI Tong3. A Hyperspectral Image Classification Model Based on Band Clustering and Multi-Scale Structure Feature Fusion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 258-265. |
[2] |
TIAN Fu-chao1, CHEN Lei2*, PEI Huan2, BAI Jie-qi1, ZENG Wen2. Study of Factors Influencing the Length of Argon Plasma Jets at
Atmospheric Pressure With Needle Ring Electrodes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3682-3689. |
[3] |
WANG Ling-juan, OU Quan-hong, YAN Hao, TANG Jun-qi*. Preparation and Catalytic Properties of Gold Nanoflowers[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3747-3752. |
[4] |
ZHENG Ni-na1, 2*, XIE Pin-hua1, QIN Min1, DUAN Jun1. Research on the Influence of Lamp Structure of the Combined LED Broadband Light Source on Differential Optical Absorption Spectrum
Retrieval and Its Removing Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3339-3346. |
[5] |
WAN Huang-xu1, 2, LIU Ji-qiang1*, HAN Xi-qiu1, 2, LIANG Jin-long2, ZHOU Ya-dong1, FAN Wei-jia1, WANG Ye-jian1, QIU Zhong-yan1, MENG Fan-wei3. Ultrastructure and Mineral Composition of Bathymodiolus Shell From Wocan-1 Hydrothermal Vent, Northwest Indian Ocean[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3497-3503. |
[6] |
GUO Jing-fang, LIU Li-li*, CHENG Wei-wei, XU Bao-cheng, ZHANG Xiao-dan, YU Ying. Effect of Interaction Between Catechin and Glycosylated Porcine
Hemoglobin on Its Structural and Functional Properties[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3615-3621. |
[7] |
QIN Li-mei, Andy Hsitien Shen*. Photoluminescence Spectral Characteristics of Jet From Fushun, Liaoning Province[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3180-3185. |
[8] |
CHENG Hong1, YAN Ding-ce1*, WU Li-qing2, XU Jun3. Spectral Magnitude Uncertainty in Measurement of Protein Circular
Dichroism Spectra—An Empirical Study on Cytochrome C[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3105-3110. |
[9] |
ZHANG Peng1, 3, YANG Yi-fan1, WANG Hui1, TU Zong-cai1, 2, SHA Xiao-mei2, HU Yue-ming1*. A Review of Structural Characterization and Detection Methods of Glycated Proteins in Food Systems[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2667-2673. |
[10] |
TIAN Ze-qi1, WANG Zhi-yong1, YAO Jian-guo1, GUO Xu1, LI Hong-dou1, GUO Wen-mu1, SHI Zhi-xiang2, ZHAO Cun-liang1, LIU Bang-jun1*. Quantitative FTIR Characterization of Chemical Structures of Highly Metamorphic Coals in a Magma Contact Zone[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2747-2754. |
[11] |
LIU Guo-peng1, YOU Jing-lin1*, WANG Jian1, GONG Xiao-ye1, ZHAO Yu-fan1, ZHANG Qing-li2, WAN Song-ming2. Application of Aerodynamic Levitator Laser Heating Technique: Microstructures of MgTi2O5 Crystal and Melt by in-situ Superhigh Temperature Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2507-2513. |
[12] |
WANG Jie1, 2, 3, LIU Wen-qing1, 2, 4, ZHANG Tian-shu1, XIA Jian-dong5, DENG Wei5, HU Wen-jie5. Collaborative Observation of Vertical Structures of Ozone and Aerosol in a Dust Episode Based on Lidar[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2258-2265. |
[13] |
ZHU Hong-wei1, CHENG You-fa1, CHEN Shu-xiang2*, FAN Chun-li1, LI Ting1, LIU Hai-bin1, ZHAO Xiao-xue1SHAN Guang-qi1, LI Jian-jun1. Spectroscopic Characteristics of a Natural Diamond Suspected of Synthetic Diamond[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1690-1696. |
[14] |
YAN Xue-jun1, ZHOU Yang2, HU Dan-jing1, YU Dan-yan1, YU Si-yi1, YAN Jun1*. Application of UV-VIS Diffuse Reflectance Spectrum, Raman and
Photoluminescence Spectrum Technology in Nondestructive
Testing of Yellow Pearl[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1703-1710. |
[15] |
HU Shuang1, LIU Cui-mei2*, XU Lin3, JIA Wei2, HUA Zhen-dong2. Rapid Qualitative Analysis of Synthetic Cathinones by Raman
Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1821-1828. |
|
|
|
|