|
|
|
|
|
|
Ultrastructure and Mineral Composition of Bathymodiolus Shell From Wocan-1 Hydrothermal Vent, Northwest Indian Ocean |
WAN Huang-xu1, 2, LIU Ji-qiang1*, HAN Xi-qiu1, 2, LIANG Jin-long2, ZHOU Ya-dong1, FAN Wei-jia1, WANG Ye-jian1, QIU Zhong-yan1, MENG Fan-wei3 |
1. Key Laboratory of Submarine Geosciences & Second Institute of Oceanography,Ministry of Natural Resources,Hangzhou 310012,China
2. School of Earth Sciences,Chengdu University of Technology,Chengdu 610059,China
3. School of Resources and Geosciences,China University of Mining and Technology,Xuzhou 221116,China
|
|
|
Abstract The Mussel organisms from the sulfide hydrothermal field of the mid-ocean ridge can virtually record the ecological environment information around the region. However, the distribution characteristics, ultrastructure and genesis of the minerals of the shells are not well studied. A mount of mussels were first collected from the Wocan-1 hydrothermal field in the Northwest Indian Ocean, by the Manned deep-sea submersible (JIAOLONG) in 2017, which were ideal samples for investigating this scientific issue. The mussel, deep-sea Bathymodiolus of the Indian Ocean (Bathymodiolus marisindicus), is analysed by the Scanning electron microscope, Laser Raman spectroscopy, and Fourier transform infrared spectrum for their natural cross-section morphology, and mineral component. The results show that the longitudinal growth of the Bathymodiolus shell includes periostracum, prism layer,transition layer, aragonite slate layer and myostracum from the outer to the inner. In the fibrous prismatic prism layer of the shell, the c-axis cross-section of the prism is irregular, and the width of the calcite prism perpendicular to a-axis is about 818~960 nm, and it is nearly 45° oblique with the aragonite layer, and there are interlaced calcite prisms. The shape of the transition layer of the shell is extremely irregular, and it continues the growth orientation of the prismatic layer showing a trend of transition from the prismatic to the slate of aragonite. The aragonite layer has a lamellar structure, and it's about 205~1 260 nm in thickness. In the aragonite layer of the Bathymodiolus shell of the Wocan-1 hydrothermal vent, the thickness of the aragonite tablets of the same region is the same, but the thickness of the tablet of different regions is different. The myostracum has a simple prismatic ultrastructure, which is overlaid by both prismatic and nacre layers (aragonite lamellar layer). Spectral analysis shows that the minerals of the nacre and prism layers of the Bathymodiolus shell are inorganic aragonite with relatively high crystallinity and biogenic calcite,respectively. The morphology characteristics, mineral components, and genesis of the Bathymodiolus shell analyzed in the study can provide a potential example for studying the hydrothermal field's mollusk shell formation mechanism and bioinduced mineralization process.
|
Received: 2022-06-19
Accepted: 2022-10-09
|
|
Corresponding Authors:
LIU Ji-qiang
E-mail: liujq@sio.org.cn
|
|
[1] ZENG Xiang,SHAO Zong-ze(曾 湘,邵宗泽). Microbiology China(微生物学通报),2017,44(4):890.
[2] LI Jing-xi,SUN Cheng-jun,JIANG Feng-hua,et al(李景喜,孙承君,蒋凤华,等). Chinese Journal of Analytical Chemistry(分析化学),2017,45(9):7.
[3] Steinhardt J,Butler P G,Carroll M L,et al. Frontiers in Marine Science,2016,3:176.
[4] LI Wei-xing,OU Quan-hong,WANG Xiao-long,et al(李伟星,欧全宏,王小龙,等). Proceedings of the 17th National Molecular Spectroscopy Academic Conference(第十七届全国分子光谱学学术会议论文集),2012,32(10):121.
[5] CHEN Dao-hai,HUO Ying-xian(陈道海,霍颖娴). Chinese Journal of Zoology(动物学杂志),2015,50(1):122.
[6] White S N. Chemical Geology,2009,259(3-4):240.
[7] ZHANG Gang-sheng,WANG Gang,ZHANG Wei-gang(张刚生,汪 港,张伟钢). Chinese Journal of Spectroscopy Laboratory(光谱实验室),2007,24(5):898.
[8] Peharda M,Schöne B R,Black B A,et al. Palaeogeography Palaeoclimatology Palaeoecology,2021,570:110371.
[9] Caldarescu D E,Brey T,Abele D,et al. Frontiers in Marine Science,2021,8. doi:10.3389/fmars.2021.687318.
[10] Machado J,Lopes-Lima M,Damasceno-Oliveira A,et al. Journal of Shellfish Research,2009,28 (4):899.
[11] Bojar A V,Lécuyer C,Bojar H P,et al. Deep Sea Research Part Ⅰ:Oceanographic Research Papers,2018,133:49.
[12] Cravo A,Foster P,Almeida C,et al. Marine Environmental Research,2008,65(4):338.
[13] Bau M,Balan S,Schmidt K,et al. Earth & Planetary Science Letters,2010,299(3-4):310.
[14] CUI Nan-nan,DU Zeng-feng,ZHANG Xin,et al(崔楠楠,杜增丰,张 鑫,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2020,40(3):750.
[15] Nasdala L,Smith D C,Kaindl R,et al. Raman Spectroscopy: Analytical Perspectives in Mineralogical Research, in Book: Spectroscopic Methods in Mineralogy, Eotvos University Press,2004,281.
[16] CUI Fu-zhai(崔福斋). Biomineralization(生物矿化). Beijing:Tsinghua University Press(北京:清华大学出版社),2012.
[17] SHAO Hao-bin,ZHU Jun,ZHOU Qi,et al(邵浩彬,朱 军,周 琦,等). Acta Materiae Compositae Sinica(复合材料学报),2019,36(10):2398.
[18] TANG Ya-li,ZHANG En(唐亚丽,张 恩). Jiangsu Agricultural Sciences(江苏农业科学),2017,45(24):156.
[19] OU Xiao-ya,LI Li-ping,YAN Bing,et al(欧晓娅,李立平,闫 冰,等). Journal of Gems & Gemmology(宝石和宝石学杂志),2018,20(5):15.
[20] Meng J,Zhang P,Wang S. Chemical Society Reviews,2016,45:237.
[21] Li X W,Ji H M,Yang W,et al. Journal of the Mechanical Behavior of Biomedical Materials,2017,74:54.
[22] Génio L,Kiel S,Cunha M R,et al. Deep-Sea Research Part Ⅰ: Oceanographic Reseach Papers,2012,64:86.
[23] Kiel S. Malacologia,2004,46(1):169.
[24] Furuhashi T,Schwarzinger C,Miksik I,et al. Comparative Biochemistry and Physiology,Part B:Biochemistry and Molecular Biology,2009,154(3):351.
[25] Roberts W L,Campbell T J,Weber J. Encyclopedia of Minerals. 2nd ed. New York:Edition Van Nostrand Reinhold,1990,116. doi:10.1180/minmag.1975.040.309.15.
[26] Kádár E,Checa A G,Damasceno-Oliveira A,et al. Journal of Comparative Physiology,2008,178(1):123.
[27] LIANG Yan,ZHAO Jie,WU Cheng-wei(梁 艳,赵 杰,吴承伟). Journal of Functional Materials(功能材料),2010,41(S3):459.
[28] Stopar J D,Lucey P G,Sharma S K,et al. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy,2005,61(10):2315.
[29] Taylor J D, Kennedy W J, Hall A. The Shell Structure and Mineralogy of the Bivalvia, in Bulletin of the British Museum (Natural History) Zoology,London: Trustees of the British Museum, 1969.
[30] LI Qing-mei,HUANG Zeng-qiong,LI Hao-xuan,et al(李青梅,黄增琼,李浩璇,等). Journal of Guangxi University (Natural Science Edition)[广西大学学报(自然科学版)],2011,36(6):882.
[31] HE Peng,CHEN Jian-xin,SU Min,et al(何 朋,陈建新,苏 敏,等). CIESC Journal(化工学报),2015,66(S2):450.
[32] Xi S,Zhang X,Du Z,et al. Journal of Asian Earth Sciences,2018,168:207.
[33] Dauphin Y. Applied Spectroscopy,1999,53(2):184.
[34] Beniash E,Aizenberg J,Addadi L,et al. Proceedings of the Royal Society B:Biological Sciences,1997,264(1380):461.
[35] ZHANG Gang-sheng,LI Hao-xuan(张刚生,李浩璇). Mineralogy and Petrology(矿物岩石),2006,(1):1.
[36] Andersen F A,Brecevic L. Acta Chemica Scandinavica,1991,45(4):1018.
|
[1] |
YU Lian-gang1, LIU Xian-yu2*, CHEN Quan-li3. Gemstone Mineralogical and Spectroscopic Characteristics of
Quartzose Jade (“Mianlv Yu”)[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2543-2549. |
[2] |
LUO Jie1, 2, YUE Su-wei1, 2*, GUO Hong-ying1, LIU Jia-jun3. Spectroscopic Characteristics and Coloring Mechanism of Smithsonite
Jade[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1886-1890. |
[3] |
ZHANG Hao1,2, GAO Qing1, HAN Xiang-xiang1, RUAN Gao-yang1, LIU Xiu-yu1. Mechanism Analysis of Formaldehyde Degradation by Hot Braised Slag Modified Activated Carbon Based on XRF and XRD[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(05): 1447-1451. |
[4] |
ZHUO Cheng-cheng, CHEN Tao*. Study on Mineral Composition and Spectroscopy Characteristics of Four Kinds of Red Qingtian Stones[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(10): 3232-3236. |
[5] |
CHEN Quan-li1, LIU Xian-yu1, 2*, JIN Wen-jing1, ZHU Wen-jing1. A Study on IR Absorption Spectroscopy and XRD Characteristics of White and Yellow Natural Turquoise Associated Minerals[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(10): 3084-3089. |
[6] |
CHEN Quan-li1, YIN Zuo-wei1, BU Yue-wen2, ZHONG Zeng-qiu3 . Raman Spectroscopy Study on the Mineral Composition of the Guatemalan Jade[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2012, 32(09): 2447-2451. |
|
|
|
|