光谱学与光谱分析 |
|
|
|
|
|
Non-Covalent Albumin Conjugates of Silicon(Ⅳ) Phthalocyanines Axially Substituted with Nucleoside: Preparation and in vitro Photodynamic Activities |
YANG Xiao-mei, ZHENG Bi-yuan, CAI Yue, LIN Ai-lan, SHEN Xiao-min, ZHANG Han-hui, HUANG Jian-dong* |
College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350108, China |
|
|
Abstract The interactions of bovine serum albumin (BSA) with five novel silicon (Ⅳ) phthalocyanines(SiPc1-5) axially modified by nucleosides (cytidine, 5-N-cytidine, methyl cytidine, uridine and methyl uridine) derivatives were studied by fluorescence spectroscopy. The results show that there are strong interactions between these silicon phthalocyanines and BSA with a binding constant of(4.90~83.18)×105 mol-1·L. Therefore, the non-covalent BSA conjugate of bis(2’,3’-O-isopropyl-cytidine-oxy) phthalocyaninatosilicon(Ⅳ) (SiPc1) was further been prepared. The molar ratio of phthalocyanine to albumin was found to be 1∶1 for the obtained SiPc1-BSA conjugate. The absorption spectra of SiPc1 and SiPc1-BSA in the visible region have no significant difference, both showing an Q-band maximum at about 686 nm. It indicates that the spectroscopic characteristics of SiPc1 are not affected by binding to albumin. The SiPc1-BSA conjugate exhibits high photodynamic activity against human hepatoma cell line HepG2 with an IC50 value of 3.0×10-7 mol·L-1. By comparsion, SiPc1-BSA has a higher photodynamic activity than SiPc1 (in PBS formation, IC50=7.0×10-7 mol·L-1), which can be attributed to its higher cellular uptake.
|
Received: 2013-12-26
Accepted: 2014-03-15
|
|
Corresponding Authors:
HUANG Jian-dong
E-mail: jdhuang@fzu.edu.cn
|
|
[1] Dolmans D E, Fukumura D, Jain R K, et al. Nature. Rev. Cancer, 2003, 3(5): 380. [2] Ethirajan M, Chen Y, Joshi P, et al. Chem. Soc. Rev., 2011, 40(1): 340. [3] Colussi V C, Feyes D K, Mulvihill J W, et al. Photochem. Photobiol., 2008, 69(2): 236. [4] Jiang X J, Yeung S L, Lo P C, et al. J. Med. Chem., 2011, 54(1): 320. [5] Baron E D, Malbasa C L, Santo-Domingo D,et al. Lasers Surg. Med., 2010, 42(10): 728. [6] Shen X M, Zheng B Y, Huang X R, et al. Dalton Trans., 2013, 42(29): 10398. [7] SHEN Xiao-min, ZHENG Bi-yuan, ZHANG Han-hui, et al(沈小敏, 郑碧远, 张汉辉, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2013, 33(10): 2731. [8] Sharman W M, van Lier J E, Allen C M. Adv. Drug Delivery Rev., 2004, 56(1): 53. [9] Lang K, Mosinger J, Wagnerova D M. Coord. Chem. Rev., 2004, 248(3-4): 321. [10] Kratz F. J. Control Release, 2008, 132(3): 171. [11] Liu Y, Xie M X, Jiang M, et al. Spectrochem. Acta A, 2005, 61(9): 2245. [12] Huang J D, Lo P C, Chen Y M, et al. J. Inorg. Biochem., 2006, 100(5-6):946. [13] WEN Jin-kun, HAN Mei(温进坤, 韩 梅). Medical Molecular Biology: Theory and Research Technology(医学分子生物学: 理论与研究技术). Beijing: Science Press(北京: 科学出版社), 1999. 219. [14] Ke M R, Huang J D, Weng S M, et al. J. Photochem. Photobiol. A, 2009, 23(1): 201. |
[1] |
YANG Jing1, LI Li1, LIANG Jian-dan1, HUANG Shan1, SU Wei1, WEI Ya-shu2, WEI Liang1*, XIAO Qi1*. Study on the Interaction Mechanism Between Thiosemicarbazide Aryl Ruthenium Complexes and Human Serum Albumin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2761-2767. |
[2] |
REN Li-lei, PENG Yu-ling, WANG Shu-jun*, ZHANG Cheng-gen, CHEN Yu, WANG Xin-tong, MENG Xiao-ning. Fluorescence Spectroscopy for Studies on the Interaction Between Three Metalloporphyrins With Human Serum Albumin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 806-813. |
[3] |
LI Jin-zhi1, LIU Chang-jin1, 4*, SHE Zhi-yu2, ZHOU Biao2, XIE Zhi-yong2, ZHANG Jun-bing3, JIANG Shen-hua2, 4*. Antiglycation Activity on LDL of Clove Essential Oil and the Interaction of Its Most Abundant Component—Eugenol With Bovine Serum Albumin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 324-332. |
[4] |
WANG Jun1, WANG Zhou-li2, CHENG Jing-jing1. Interaction Between Tartrazine and Bovine Serum Albumin Using Multispectral Method and Molecular Docking[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 904-909. |
[5] |
WANG Xiao-xia1,3*, WU Hao1, NIE Zhi-hua2, MA Li-tong1,3*, CUI Jin-long1, SAI Hua-zheng1, CHENG Jian-guo1. Study on the Interaction Between Fulvic Acid and Bovine Serum Albumin by Multispectral and Molecular Docking[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2904-2910. |
[6] |
ZHANG Chuan-ying1, PENG Xin1*, RAO Heng-jun2, QI Wei2, SU Rong-xin2, HE Zhi-min2. Spectroscopic Studies on the Interaction Between Salvianolic Acid B and Bovine Serum Albumin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(06): 1701-1707. |
[7] |
TUO Xun1, SONG Ji-min1, FU Hao2, LÜ Xiao-lan1*. Study on Interaction Between Hexabromocyclododecane and Bovine Serum Albumin by Spectroscopy and Computer Simulation Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(05): 1487-1492. |
[8] |
ZHANG Meng-jie, CAO Si-min, WANG Meng-yu, LI Hao-yang, LI Dong, ZHAO Ze-nan, XU Jian-hua*. Fluorescence Enhancement and Conformational Studies of Coenzyme NADH With Aluminum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(04): 997-1003. |
[9] |
HU Jing-jing, TONG Chang-lun*. Study on the Interaction Between Carbon Quantum Dots and Human Serum Albumin by Spectroscopic Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(04): 1107-1113. |
[10] |
XIE Wen-jing, WANG Jing-jing, LIU Ying, DING Zhou, LIU Ying*. Study on the Fluorescence Emission Characteristics and Change Mechanism of Polysaccharide on White Blood Cell[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(04): 1050-1054. |
[11] |
LI Xue1, WANG Li1, LIU Guang-xian1*, TU Zong-cai2. Effect of Urea on Glycosylation of BSA Based on Spectral Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(02): 478-483. |
[12] |
ZHANG Lu1, XU Liang1, TU Zong-cai1, 2*, ZHOU Qi-ming1, ZHOU Wen-na1. Mechanism of Isoquercitrin Inhibiting Advanced Glycation Products Formation Based on Fluorescence Spectroscopy Technique[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(12): 3755-3760. |
[13] |
LI Xing-xing, ZHANG Xiang, HUANG Xue-song*. Interaction Between Three Sulfur-Containing Amino Acids in Garlic and Bovine Serum Albumin Determined by Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(11): 3483-3488. |
[14] |
ZHANG Jing1, GAO Xuan1, 2, JIN Liang1, WANG Hong-hui1, ZHOU Xi-ping1. Comparisons and Applications of Functional Equations for the Calculation of the Protein-Ligand Binding Constant Based on Fluorescence Spectral Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(11): 3494-3498. |
[15] |
HUANG Fang1, LIU Ming-xue1, 2*, XIONG Jie1, CHEN Lü-qi1, GAO Zhu-xin1, CHEN Hui-ming1, WANG Dan-ni1. Effect of Far-Infrared Ceramic Powder on the Interaction Between Essential Oil and BSA[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(08): 2358-2365. |
|
|
|
|