|
|
|
|
|
|
Study on Interaction Between Hexabromocyclododecane and Bovine Serum Albumin by Spectroscopy and Computer Simulation Methods |
TUO Xun1, SONG Ji-min1, FU Hao2, LÜ Xiao-lan1* |
1. College of Chemistry, Nanchang University, Nanchang 330000, China
2. School of Pharmacy, Nanchang University, Nanchang 330000, China |
|
|
Abstract Hexabromocyclododecane (HBCD) is widely used in industry as a kind of brominated flame retardant. However, more and more people pay close attention to the problem of HBCD contamination in the environment due to its potential risk to human health. There are no reports focuses on the transport mechanism of HBCD in the human body. Hence, multi-spectroscopy and computer simulation methods investigated the interaction mechanisms of HBCD and bovine serum albumin (BSA)-. The solution experiments confirmed that HBCD quenched BSA’s intrinsic fluorescence through the static quench mechanism and non-radiation energy transfer. The binding constants (Ka) between them were 2.796 6×104 L·mol-1 (288 K), 2.194 1×104 L·mol-1 (293 K), and 1.174 4×104 L·mol-1 (298 K), respectively. The number of the binding site in the BSA-HBCD complex was approximately equal to 1. The thermodynamic constants were calculated to be ΔH=-61.749 kJ·mol-1 and ΔS=-128.742 J·(mol·K)-1, indicating that van der Waals or hydrogen bond play a key role in this binding process. The result of molecular docking and fluorescence spectrum indicated that the primary binding site for HBCD was located in the hydrophobic pocket of sub-domain Ⅱ A of BSA, and the binding distance was about 3.45 nm. The secondary conformation of BSA did not affect by HBCD was observed in three-dimensional fluorescence spectra and MD simulations. This research provides a theoretical basis for further understanding of toxic effects of HBCD on human toxicity.
|
Received: 2018-12-13
Accepted: 2019-04-12
|
|
Corresponding Authors:
LÜ Xiao-lan
E-mail: lxl@ncu.edu.cn
|
|
[1] Cao X H,Lu Y L,Zhang Y Q,et al. Environ. Pollut., 2018, 236: 283.
[2] Zhang Y Q,Lu Y L,Wang P,et al. Sci. Total Environ., 2018, 610: 94.
[3] Koch C, Schmidt-Koetters T, Rupp R, et al. Environ. Pollut., 2015, 199: 26.
[4] Wang X,Yang J,Li H,et al. Chemosphere, 2018, 208: 31.
[5] Miller I, Serchi T, Cambier S, et al. Toxicol. Lett., 2016, 245: 40.
[6] Meng X Z,Xiang N,Duan Y P,et al. Environ. Toxicol. Chem., 2012, 31(7):1424.
[7] Huang X, Chen C,Shang Y,et al. Chemosphere,2016, 161: 251.
[8] Paolo G Gobbi, Adele Gendarini, Annamaria Crema, et al. Cancer, 2015, 55(2):389.
[9] Chen H,He P,Rao H,et al. Chemosphere, 2015, 129: 217.
[10] Naseri A, Hosseini S, Rasoulzadeh F, et al. J. Lumin., 2015, 157: 104.
[11] Poureshghi F, Ghandforoushan P, Safarnejad A, et al. J. Photoch. Photobio. B, 2017, 166: 187.
[12] Manouchehri F, Izadmanesh Y, Aghaee E, et al. Bioorg. Chem., 2016, 68: 124.
[13] TANG Qian, SU Jin-hong, CAO Hong-yu, et al(唐 乾, 苏晋红, 曹洪玉, 等),Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2017, 37(11):3485. |
[1] |
HOU Qian-yi1, 2, DONG Zhuang-zhuang1, 2, YUAN Hong-xia1, 2*, LI Qing-shan1, 2*. A Study of the Mechanism of Binding Between Quercetin and CAV-1 Based on Molecular Simulation, Bio-Layer Interferometry and
Multi-Spectroscopy Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 890-896. |
[2] |
LI Jin-zhi1, LIU Chang-jin1, 4*, SHE Zhi-yu2, ZHOU Biao2, XIE Zhi-yong2, ZHANG Jun-bing3, JIANG Shen-hua2, 4*. Antiglycation Activity on LDL of Clove Essential Oil and the Interaction of Its Most Abundant Component—Eugenol With Bovine Serum Albumin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 324-332. |
[3] |
WANG Jun1, WANG Zhou-li2, CHENG Jing-jing1. Interaction Between Tartrazine and Bovine Serum Albumin Using Multispectral Method and Molecular Docking[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 904-909. |
[4] |
WANG Xiao-xia1,3*, WU Hao1, NIE Zhi-hua2, MA Li-tong1,3*, CUI Jin-long1, SAI Hua-zheng1, CHENG Jian-guo1. Study on the Interaction Between Fulvic Acid and Bovine Serum Albumin by Multispectral and Molecular Docking[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2904-2910. |
[5] |
ZHANG Chuan-ying1, PENG Xin1*, RAO Heng-jun2, QI Wei2, SU Rong-xin2, HE Zhi-min2. Spectroscopic Studies on the Interaction Between Salvianolic Acid B and Bovine Serum Albumin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(06): 1701-1707. |
[6] |
LI Xue1, WANG Li1, LIU Guang-xian1*, TU Zong-cai2. Effect of Urea on Glycosylation of BSA Based on Spectral Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(02): 478-483. |
[7] |
LI Xing-xing, ZHANG Xiang, HUANG Xue-song*. Interaction Between Three Sulfur-Containing Amino Acids in Garlic and Bovine Serum Albumin Determined by Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(11): 3483-3488. |
[8] |
HUANG Fang1, LIU Ming-xue1, 2*, XIONG Jie1, CHEN Lü-qi1, GAO Zhu-xin1, CHEN Hui-ming1, WANG Dan-ni1. Effect of Far-Infrared Ceramic Powder on the Interaction Between Essential Oil and BSA[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(08): 2358-2365. |
[9] |
WANG Xiao-xia1*, YU Yang-yang2, MA Li-tong1, NIE Zhi-hua3, WANG Zheng-de1, CUI Jin-long1, SAI Hua-zheng1, ZHAO Wen-yuan1. Study on the Interaction Between Chlortetracycline Hydrochloride and Pepsin by Multispectral and Molecular Docking[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(08): 2518-2524. |
[10] |
WANG Xiao-xia1*, NIE Zhi-hua2, MA Li-tong1, CUI Jin-long1, SAI Hua-zheng1,ZHAO Wen-yuan1. Study on the Interaction Between Minocycline and Bovine Serum Albumin by Multi Spectral Method and Molecular Docking Simulation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(05): 1503-1508. |
[11] |
HUANG Chao-bo3, XU Han3, YANG Ming-guan3, LI Zhen-jing1, 3, YANG Hua1, 3, WANG Chang-lu1, 2, 3, ZHOU Qing-li1, 2, 3*. The Interaction between Rubropunctamine and Bovine Serum Albumin Using Spectrometry and Molecular Docking[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(10): 3102-3108. |
[12] |
ZHANG Qiu-lan1,2, XIE Li-xin3, YANG Lin-hui3, TUO Xun2, NI Yong-nian1,2*. Studies on the Interaction between Leucomalachite Green with Bovine Serum Albumin by MCR-ALS and Molecular Docking[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(03): 851-856. |
[13] |
TAN Hong-ying. Investigation of Bovine Serum Albumin at Different Temperatures by Terahertz Time-Domain Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(11): 3374-3378. |
[14] |
LUO Dan, ZHOU Guang-ming*, ZHANG Lu-tao, ZHANG Cai-hong. Analysis of Indomethacin by Surface Enhanced Raman Spectroscopy Based on L-Cys@Ag[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(10): 3112-3116. |
[15] |
WANG Xiao-xia1, NIE Zhi-hua2, LI Song-bo1, MA Li-tong1, LIU Jin-yan1, WANG Zheng-de1, YAN Hui1. Study on the Interaction between Tetracycline Hydrochloride and Bovine Serum Albumin by Multispectral and Molecular Docking[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(08): 2468-2476. |
|
|
|
|