光谱学与光谱分析 |
|
|
|
|
|
Full-Field and Automatic Methodology of Spectral Calibration for PGP Imaging Spectrometer |
SUN Ci1, 2, Bayanheshig1*, CUI Ji-cheng1, PAN Ming-zhong1, LI Xiao-tian1, TANG Yu-guo1 |
1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China 2. University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract In order to analyze spectral data quantitatively which is obtained by prism-grating- prism imaging spectrometer, spectral calibration is required in order to determine spectral characteristics of PGP imaging spectrometer, such as the center wavelength of every spectral channel, spectral resolution and spectral bending. A spectral calibration system of full field based on collimated monochromatic light method is designed. Spherical mirror is used to provide collimated light, and a freely sliding and rotating folding mirror is adopted to change the angle of incident light in order to realize full-field and automatic calibration of imaging spectrometer. Experiments of spectral calibration have been done for PGP imaging spectrometer to obtain parameters of spectral performance, and accuracy analysis combined with the structural features of the entire spectral calibration system have been done. Analysis results indicate that spectral calibration accuracy of the calibration system reaches 0.1 nm, and the bandwidth accuracy reaches 1.3%. The calibration system has merits of small size, better commonality, high precision and so on, and because of adopting the control of automation, the additional errors which are caused by human are avoided. The calibration system can be used for spectral calibration of other imaging spectrometers whose structures are similar to PGP.
|
Received: 2013-08-21
Accepted: 2013-11-20
|
|
Corresponding Authors:
Bayanheshig
E-mail: bayin888@sina.com
|
|
[1] Zhu S B, Tang M X, Ji Y Q, et al. Proc. of SPIE, 2009, 7156: 71560L1. [2] Hedman T R, Beach R, Jarecke J P. U. S. Patent, 2009, 6111640. [3] Didier R, Richard S, Philippe D. Proceedings of SPIE, 2003, 4891: 505. [4] Curtiss D O, Jeffrey B, Robert L A, et al. Optics Express, 2002, 10(4): 210. [5] Green R O, Eastwood M L, Sarture C M, et al. Remote Sens. Environ., 1998, 65: 227. [6] Jerry Z, Daniel G, Robert M, et al. Proceedings of SPIE, 2004, 5425: 182. [7] Brigit S, Jochen F, Peter G, et al. Proc. of SPIE, 2006, 636110: 1. [8] Zhang L F, Huang C P, Wu T X, et al. Sensors, 2011, 11: 2408. [9] ZHENG Yu-quan(郑玉权). Optics and Precision Engineering(光学精密工程), 2010, 18(11): 2347. [10] HE Zhi-ping, LIU Qiang, XU Wei-ming, et al(何志平,刘 强,徐卫明,等). Infrared and Laser Engineering (红外与激光工程), 2008, 37: 531. [11] QI Xiang-dong, HAN Peng-peng, PAN Ming-zhong, et al(齐向东,撖芃芃,潘明忠,等). Optics and Precision Engineering(光学精密工程), 2011, 19(12): 2870. [12] WANG Jian-yu(王建宇). Infrared(红外), 1990, 9(4): 277. |
[1] |
DU Guo-jun, ZHANG Yu-gui, CUI Bo-lun, JIANG Cheng, OU Zong-yao. Spectral Calibration of Hyperspectral Monitor (HSM) on Carbonsat[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1556-1562. |
[2] |
XIE Ying-ke1, 2, WANG Xi-chen2, LIANG Heng-heng2, WEN Quan3. A Near-Infrared Micro-Spectrometer Based on Integrated Scanning
Grating Mirror and Improved Asymmetric C-T Structure[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 563-568. |
[3] |
WANG Jian-wei1, 2, LI Wei-yan1, SUN Jian-ying1, LI Bing1, CHEN Xin-wen1, TAN Zheng1, ZHAO Na1, LIU Yang-yang1, 3, LÜ Qun-bo1, 3*. Fast Spectral Calibration Method of Spectral Imager[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(07): 2013-2017. |
[4] |
CHEN Yu1, WEI Yong-ming1, WANG Qin-jun1,2*, LI Lin3, LEI Shao-hua4, LU Chun-yan5. Effects of Different Spectral Resolutions on Modeling Soil Components[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(03): 865-870. |
[5] |
LI Zhi-wei1, 2, SHI Hai-liang1, 2, LUO Hai-yan1, 2, XIONG Wei1, 2*. Study on the Relationship Between Apodization Function and Signal-to-Noise Ratio of Hyperspectral Spatial Interferogram[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(01): 29-33. |
[6] |
HAO Li-hua1,2, LU Xiao-dong2, WANG Ming-quan1,2. Research on a Novel Static Imaging Spectrometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(09): 2971-2975. |
[7] |
LIU Lu1,2,3, CHEN Yuan-yuan1,2,3*, ZHANG Rui1,2,3, WANG Zhi-bin1,2,3, XUE Peng1,3, LI Xiang2. Study on 0 Level Interference Suppression Method for Hyperspectral Imaging Based on AOTF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(10): 3182-3186. |
[8] |
ZHENG Zhi-zhong1,2, YANG Zhong1*, XIU Lian-cun2, DONG Jin-xin2, CHEN Chun-xia2, GAO Yang2, YU Zheng-kui2. Design of a SWIR Offner Imaging Spectrometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(07): 2267-2272. |
[9] |
ZHENG Lian-hui1,2,3,4, RAO Chang-hui1,2*, GU Nai-ting1,2, QIU Qi4 . The Aberration Corrected Grating Spectrometer Based on Adaptive Optics [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(12): 4088-4093. |
[10] |
LI Zhi-wei1, 2, 3, XIONG Wei1, 3*, SHI Hai-liang1, 3, LUO Hai-yan1, 3, QIAO Yan-li1, 3 . Study on Asymmetric Spatial Heterodyne Spectroscopy [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(07): 2291-2295. |
[11] |
YANG Jin1, 2, CUI Ji-cheng1, Bayanheshig1, QI Xiang-dong1, TANG Yu-guo1*, YAO Xue-feng1. Study on the Design of Prism Hyperspectral Imaging System Based on Off-Axis Two-Mirror Littrow Configuration[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(05): 1537-1542. |
[12] |
XIE Pei-yue1, 2, YANG Jian-feng1, XUE Bin1*, Lü Juan1, HE Ying-hong1, LI Ting1, MA Xiao-long1 . Research on an Equal Wavelength Spectrum Reconstruction Method of Interference Imaging Spectrometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(03): 848-852. |
[13] |
YANG Zeng-peng1, 2, TANG Yu-guo1, Bayanheshig1, CUI Ji-cheng1, YANG Jin1 . Research on Small-Type and High-Spectral-Resolution Grating Monochromator[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(01): 273-278. |
[14] |
DU Liang-liang1, DU Xue-wei2, LI Chao-yang2, AN Ning2, WANG Qiu-ping2* . Development of a High Spectral Resolution UV Flat-Field Spectrograph [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(06): 1751-1755. |
[15] |
LIAN Yu-sheng, LIAO Ning-fang, Lü Hang, WU Wen-min, DONG Zhi-gang . A Novel Spatial Modulation Fourier Transform Spectrometer with Adjustable Spectral Resolution[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(11): 3136-3140. |
|
|
|
|